TABLE OF CONTENTS

DIVISION 23 - HEATING, VENTILATING, AND AIR-CONDITIONING (HVAC)

- SECTION 23 0500 BASIC HVAC REQUIREMENTS
- SECTION 23 0503 THROUGH PENETRATION FIRESTOPPING
- SECTION 23 0505 HVAC DEMOLITION FOR REMODELING
- SECTION 23 0513 MOTORS
- SECTION 23 0529 HVAC SUPPORTS AND ANCHORS
- SECTION 23 0548 HVAC VIBRATION ISOLATION
 - VIBRATION ISOLATION SUBMITTAL FORM
- SECTION 23 0553 HVAC IDENTIFICATION
- SECTION 23 0593 TESTING, ADJUSTING, AND BALANCING
- SECTION 23 0713 DUCTWORK INSULATION
- SECTION 23 0719 HVAC PIPING INSULATION
- SECTION 23 0801 COMMISSIONING OF HVAC
- SECTION 23 0900 CONTROLS
- SECTION 23 0913 INSTRUMENTATION
- SECTION 23 2100 HYDRONIC PIPING
- SECTION 23 2116 HYDRONIC SPECIALTIES
- SECTION 23 2123 HVAC PUMPS
- SECTION 23 2300 REFRIGERATION PIPING AND SPECIALTIES
- SECTION 23 3100 DUCTWORK
- SECTION 23 3300 DUCTWORK ACCESSORIES
- SECTION 23 3416 CENTRIFUGAL FANS
- SECTION 23 6213 AIR COOLED CONDENSING UNITS
- SECTION 23 7313 INDOOR MODULAR AIR HANDLING UNITS

DIVISION 26 - ELECTRICAL

- SECTION 26 0500 BASIC ELECTRICAL REQUIREMENTS
- SECTION 26 0503 THROUGH PENETRATION FIRESTOPPING
- SECTION 26 0505 ELECTRICAL DEMOLITION FOR REMODELING
- SECTION 26 0513 WIRE AND CABLE
- SECTION 26 0526 GROUNDING AND BONDING
- SECTION 26 0527 SUPPORTING DEVICES
- SECTION 26 0533 CONDUIT AND BOXES
- SECTION 26 0553 ELECTRICAL IDENTIFICATION
- SECTION 26 2419 MOTOR CONTROL
- SECTION 26 2923 VARIABLE FREQUENCY DRIVES

DIVISION 28 - ELECTRONIC SAFETY AND SECURITY

SECTION 28 3100 - FIRE ALARM AND DETECTION SYSTEMS

END OF TABLE OF CONTENTS

SECTION 23 0500 BASIC HVAC REQUIREMENTS

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Requirements applicable to all Division 23 Sections. Also refer to Division 01 General Requirements.
- B. All materials and installation methods shall conform to the applicable standards, guidelines and codes referenced herein and within each specification section.

1.02 SCOPE OF WORK

- A. This Specification and the associated drawings govern the furnishing, installing, testing and placing into satisfactory operation of the Mechanical Systems.
- B. Each Contractor shall provide all new materials indicated on the drawings and/or in these specifications, and all items required to make the portion of the Mechanical Work a finished and working system.
- C. All work will be awarded under a single General Contract. The division of work listed below is for the Contractor's convenience and lists normal breakdown of the work.
- D. Scope of Work:
 - 1. Heating Work shall include, but is not necessarily limited to:
 - a. Extend existing heating water system including pumps, piping, insulation, air control equipment, terminal heating equipment, and specialties. Make final connections to all coils, including those furnished by others.
 - b. Furnish and install refrigerant piping, accessories, and final charge of refrigerant.
 - c. Furnish and install condensate drain piping from cooling related equipment such as air handlers and cooling coil drain pans.
 - d. Furnish and install firestopping systems for penetrations of fire-rated construction associated with this Contractor's work.
 - e. Complete all applicable tests, certifications, forms, and matrices.
 - 2. Air Conditioning and Ventilating Work shall include, but is not necessarily limited to:
 - a. Remove existing air handling unit, return fan, condensing unit, refrigerant piping and associated ductwork.
 - b. Install owner furnished package indoor air handling unit complete with dampers, filters, coils, fans, and motors.
 - c. Install Owner furnished air-cooled condensing unit and expand existing exterior concrete pad.
 - d. Furnish and install return fan.
 - e. Furnish and install complete supply air ductwork systems including all fittings, insulation, and outlets.
 - f. Furnish and install complete return air ductwork systems including all fittings, insulation, and inlets.
 - g. Furnish and install all temperature control systems.
 - h. Furnish and install firestopping systems for penetrations of fire-rated construction associated with this Contractor's work.
 - i. Complete all applicable tests, certifications, forms, and matrices.
 - 3. Temperature Control Work shall include, but is not necessarily limited to:
 - a. Furnish and install a complete temperature control system as specified in Section 23 0900.
 - b. Temperature control system shall consist of a full Direct Digital Control (DDC) system including all accessories, sensors, and programming.

- c. Furnish automatic control valves and dampers for installation by others.
- d. Furnish and install firestopping systems for penetrations of fire-rated construction associated with this Contractor's work.
- 4. Testing, Adjusting, and Balancing Work shall include, but is not necessarily limited to:
 - a. Furnish complete testing, adjusting, and balancing as specified in Section 23 0593, including, but not limited to, air systems, hydronic systems, plumbing systems, and verification of control systems.
 - b. Complete all applicable tests, certifications, forms, and matrices

1.03 OWNER FURNISHED PRODUCTS

- A. The Owner will supply the following items for installation and/or connection by this Contractor:
 - 1. Contractor shall coordinate with owner for delivery dates. The air handling unit and condensing unit will both ship separately. The delivery dates may be several weeks apart.
 - 2. The Owner will furnish AHU-1. Contractor is responsible for receiving, unloading, assembly and/or disassembly of unit as well as installation within the mechanical room.
 - 3. The Owner will furnish CU-1. Contractor is responsible for receiving, unloading and installation of the unit.
- B. The Owner will supply manufacturer's installation data and equipment data such as final shop drawings for Owner-purchased equipment for this project.
- C. This Contractor shall make all mechanical system connections shown on the drawings or as required for fully functional units.
- D. This Contractor is responsible for all damage to Owner furnished equipment caused during receiving, unloading, assembly and/or disassembly as well as installation.

1.04 WORK SEQUENCE

- A. All work that will produce excessive noise or interference with normal building operations, as determined by the Owner, shall be scheduled with the Owner. It may be necessary to schedule such work during unoccupied hours. The Owner reserves the right to determine when restricted construction hours will be required.
- B. Itemize all work and list associated hours and pay scale for each item.

1.05 DIVISION OF WORK BETWEEN MECHANICAL, ELECTRICAL & CONTROL CONTRACTORS

- A. Definitions:
 - 1. "Mechanical Contractors" refers to the following:
 - a. Plumbing Contractor.
 - b. Heating Contractor.
 - c. Air Conditioning and Ventilating Contractor.
 - d. Temperature Control Contractor.
 - e. Testing, Adjusting, and Balancing Contractor.
 - 2. Motor Control Wiring: The wiring associated with the remote operation of the magnetic coils of magnetic motor starters or relays, or the wiring that permits direct cycling of motors by means of devices in series with the motor power wiring. In the latter case the devices are usually single phase and are usually connected to the motor power wiring through a manual motor starter having "Manual-Off-Auto" provisions.
 - 3. Control devices such as start-stop push buttons, thermostats, pressure switches, flow switches, relays, etc., generally represent the types of equipment associated with motor control wiring.
 - 4. Motor control wiring is single phase and usually 120 volts. In some instances, the voltage will be the same as the motor power wiring. Generally, where the motor power wiring exceeds 120 volts, a control transformer is used to give a control voltage of 120 volts.

- 5. Temperature Control Wiring: The wiring associated with the operation of a motorized damper, solenoid valve or motorized valve, etc., either modulating or two-position, as opposed to wiring which directly powers or controls a motor used to drive equipment such as fans, pumps, etc.
 - a. This wiring will be from a 120 volt source and may continue as 120 volt, or be reduced in voltage (24 volt) in which case a control transformer shall be furnished as part of the temperature control wiring.
- 6. Control Motor: An electric device used to operate dampers, valves, etc. It may be two-position or modulating. Conventional characteristics of such a motor are 24 volts, 60 cycles, 1 phase, although other voltages may be encountered.
- 7. Voltage is generally specified and scheduled as distribution voltage. Motor submittals may be based on utilization voltage if it corresponds to the correct distribution voltage.

Distribution/Nominal Voltage	Utilization Voltage		
120	115		
208	200		
240	230		
277	265		
480	460		

B. General:

- 1. The purpose of these Specifications is to outline the Electrical and Mechanical Contractor's responsibilities related to electrical work required for items such as temperature controls, mechanical equipment, fans, chillers, compressors and the like. The exact wiring requirements for much of the equipment cannot be determined until the systems have been selected and submittals reviewed. Therefore, the electrical drawings show only known wiring related to such items. All wiring not shown on the electrical drawings, but required for mechanical systems, is the responsibility of the Mechanical Contractor.
- 2. Where the drawings require the Electrical Contractor to wire between equipment furnished by the Mechanical Contractor, such wiring shall terminate at terminals provided in the equipment. The Mechanical Contractor shall provide complete electrical power/controls wiring diagrams and supervision to the Electrical Contractor and designate the terminal numbers for correct wiring.
- 3. All electrical work shall conform to the National Electrical Code. All provisions of the Electrical Specifications concerning wiring, protection, etc., apply to wiring provided by the Mechanical Contractor unless noted otherwise.
- 4. Control low (24V) and control line (120V) voltage wiring, conduit, and related switches and relays required for the automatic control and/or interlock of motors and equipment, including final connection, are to be furnished and installed under Division 23. Materials and installation to conform to Class 1 or 2 requirements.
- 5. All Contractors shall establish utility elevations prior to fabrication and shall coordinate their material and equipment with other trades. When a conflict arises, priority is as follows:
 - a. Light fixtures.
 - b. Gravity flow piping, including condensate.
 - c. Electrical busduct.
 - d. Sheet metal.
 - e. Electrical cable trays, including access space.
 - f. Electrical conduits and wireway.

- C. Mechanical Contractor's Responsibility:
 - 1. Assumes responsibility for internal wiring of all equipment provided by the Mechanical Contractor and Owner furnished equipment installed by the Mechanical Contractor, for example:
 - a. Condensing Units.
 - b. Package Air Handling Units.
 - 2. Assumes all responsibility for the Temperature Control wiring, when the Temperature Control Contractor is a Subcontractor to the Mechanical Contractor.
 - 3. Shall verify all existing equipment sizes and capacities where units are to be modified, moved or replaced. Contractor shall notify Architect/Engineer of any discrepancies prior to ordering new units or replacement parts, including replacements of equipment motors.
 - 4. Temperature Control Subcontractor's Responsibility:
 - a. Wiring of all devices needed to make the Temperature Control System functional.
 - b. Verifying any control wiring on the electrical drawings as being by the Electrical Contractor. All wiring required for the Control System, but not shown on the electrical drawings, is the responsibility of the Temperature Control Subcontractor.
 - c. Coordinating equipment locations (such as relays, transformers, etc.) with the Electrical Contractor, where wiring of the equipment is by the Electrical Contractor.
 - 5. This Contractor is responsible for coordination of utilities with all other Contractors. If any field coordination conflicts are found, the Contractor shall coordinate with other Contractors to determine a viable layout.
- D. Electrical Contractor's Responsibility:
 - 1. Provides all combination starters, manual starters and disconnect devices shown on the Electrical Drawings or indicated to be by the Electrical Contractor on the Mechanical Drawings or Specifications.
 - 2. Installs and wires all remote control devices furnished by the Mechanical Contractor or Temperature Control Subcontractor when so noted on the Electrical Drawings.
 - 3. Provides motor control and temperature control wiring, where so noted on the drawings.
 - 4. Coordinate with the Mechanical Contractor for size of motors and/or other electrical devices involved with repair or replacement of existing equipment.
 - 5. Furnishes, installs and connects all relays, etc., for automatic shutdown of certain fans upon actuation of the Fire Alarm System as indicated and specified in Division 28.
 - 6. This Contractor is responsible for coordination of utilities with all other Contractors. If any field coordination conflicts are found, the Contractor shall coordinate with other Contractors to determine a viable layout.

1.06 QUALITY ASSURANCE

- A. Contractor's Responsibility Prior to Submitting Pricing Data:
 - 1. The Contractor is responsible for constructing complete and operating systems. The Contractor acknowledges and understands that the Contract Documents are a two-dimensional representation of a three-dimensional object, subject to human interpretation. This representation may include imperfect data, interpreted codes, utility guidelines, three-dimensional conflicts, and required field coordination items. Such deficiencies can be corrected when identified prior to ordering material and starting installation. The Contractor agrees to carefully study and compare the individual Contract Documents and report at once in writing to the Design Team any deficiencies the Contractor may discover. The Contractor further agrees to require each subcontractor to likewise study the documents and report at once any deficiencies discovered.

- 2. The Contractor shall resolve all reported deficiencies with the Architect/Engineer prior to awarding any subcontracts, ordering material, or starting any work with the Contractor's own employees. Any work performed prior to receipt of instructions from the Design Team will be done at the Contractor's risk.
- B. Qualifications:
 - 1. Only products of reputable manufacturers are acceptable.
 - 2. All Contractors and subcontractors shall employ only workers skilled in their trades.
- C. Compliance with Codes, Laws, Ordinances:
 - 1. Conform to all requirements of the City of Anamosa, Iowa's Codes, Laws, Ordinances and other regulations having jurisdiction.
 - 2. Conform to all State Codes.
 - 3. If there is a discrepancy between the codes and regulations and these specifications, the Architect/Engineer shall determine the method or equipment used.
 - 4. If the Contractor notes, at the time of bidding, that any parts of the drawings or specifications do not comply with the codes or regulations, Contractor shall inform the Architect/Engineer in writing, requesting a clarification. If there is insufficient time for this procedure, Contractor shall submit with the proposal a separate price to make the system comply with the codes and regulations.
 - 5. All changes to the system made after letting of the contract, to comply with codes or requirements of Inspectors, shall be made by the Contractor without cost to the Owner.
 - 6. If there is a discrepancy between manufacturer's recommendations and these specifications, the manufacturer's recommendations shall govern.
 - 7. All rotating shafts and/or equipment shall be completely guarded from all contact. Partial guards and/or guards that do not meet all applicable OSHA standards are not acceptable. Contractor is responsible for providing this guarding if it is not provided with the equipment supplied.
- D. Permits, Fees, Taxes, Inspections:
 - 1. Procure all applicable permits and licenses.
 - 2. Abide by all laws, regulations, ordinances, and other rules of the State or Political Subdivision where the work is done, or as required by any duly constituted public authority.
 - 3. Pay all charges for permits or licenses.
 - 4. Pay all fees and taxes imposed by the State, Municipal and/or other regulatory bodies.
 - 5. Pay all charges arising out of required inspections by an authorized body.
 - 6. Pay all charges arising out of required contract document reviews associated with the project and as initiated by the Owner or authorized agency/consultant.
 - 7. Where applicable, all fixtures, equipment and materials shall be approved or listed by Underwriter's Laboratories, Inc.
- E. Examination of Drawings:
 - 1. The drawings for the mechanical work are completely diagrammatic, intended to convey the scope of the work and to indicate the general arrangements and locations of equipment, outlets, etc., and the approximate sizes of equipment.
 - 2. Contractor shall determine the exact locations of equipment and rough-ins, and the exact routing of pipes and ducts to best fit the layout of the job.
 - 3. Scaling of the drawings is not sufficient or accurate for determining these locations.
 - 4. Where job conditions require reasonable changes in indicated arrangements and locations, such changes shall be made by the Contractor at no additional cost to the Owner.
 - 5. Because of the scale of the drawings, certain basic items, such as fittings, boxes, valves, unions, etc., may not be shown, but where required by other sections of the specifications or required for proper installation of the work, such items shall be furnished and installed.

- 6. If an item is either on the drawings or in the specifications, it shall be included in this contract.
- 7. Determination of quantities of material and equipment required shall be made by the Contractor from the documents. Where discrepancies arise between drawings, schedules and/or specifications, the greater number shall govern.
- 8. Where used in mechanical documents, the word "furnish" shall mean supply for use, the word "install" shall mean connect complete and ready for operation, and the word "provide" shall mean to supply for use and connect complete and ready for operation.
 - a. Any item listed as furnished shall also be installed, unless otherwise noted.
 - b. Any item listed as installed shall also be furnished, unless otherwise noted.
- F. Field Measurements:
 - 1. Verify all pertinent dimensions at the job site before ordering any materials or fabricating any supports, pipes or ducts.
- G. Electronic Media/Files:
 - 1. Construction drawings for this project have been prepared utilizing Revit.
 - 2. Contractors and Subcontractors may request electronic media files of the contract drawings and/or copies of the specifications. Specifications will be provided in PDF format.
 - 3. Upon request for electronic media, the Contractor shall complete and return a signed "Electronic File Transmittal" form provided by IMEG.
 - 4. If the information requested includes floor plans prepared by others, the Contractor will be responsible for obtaining approval from the appropriate Design Professional for use of that part of the document.
 - 5. The electronic contract documents can be used for preparation of shop drawings and as-built drawings only. The information may not be used in whole or in part for any other project.
 - 6. The drawings prepared by IMEG for bidding purposes may not be used directly for ductwork layout drawings or coordination drawings.
 - 7. The use of these CAD documents by the Contractor does not relieve them from their responsibility for coordination of work with other trades and verification of space available for the installation.
 - 8. The information is provided to expedite the project and assist the Contractor with no guarantee by IMEG as to the accuracy or correctness of the information provided. IMEG accepts no responsibility or liability for the Contractor's use of these documents.

1.07 WEB-BASED PROJECT SOFTWARE

- A. The State will provide ProCore, a web-based project software site for the purpose of hosting and managing project communication and documentation until completion of the warranty phase.
- B. The web-based project software shall include, at a minimum, the following features: construction schedule, submittals, RFIs, ASIs, construction change directives, change orders, drawing management, specification management, payment applications, contract modifications, meeting minutes, construction progress photos.
- C. The State will provide web-based project software user licenses for use by the Engineer and Contractor. Access will be provided from the start of the project through the completion of the warranty phase.

1.08 SUBMITTALS

- A. Submittals shall be required for the following items, and for additional items where required elsewhere in the specifications or on the drawings.
 - 1. Submittals List:

Referenced Specification Section	Submittal Item
23 05 00	Owner Training Agenda
23 05 03	Fire Seal Systems
23 05 13	Motors
23 05 48	Vibration Isolation Equipment
23 05 93	Testing, Adjusting, and Balancing
23 09 00	Controls
23 09 13	Instrumentation
23 23 00	Refrigeration Piping and Specialties
23 34 16	Centrifugal Fans

- B. General Submittal Procedures: In addition to the provisions of Division 01, the following are required:
 - 1. Transmittal: Each transmittal shall include the following:
 - a. Date
 - b. Project title and number
 - c. Contractor's name and address
 - d. Division of work (e.g., plumbing, heating, ventilating, etc.)
 - e. Description of items submitted and relevant specification number
 - f. Notations of deviations from the contract documents
 - g. Other pertinent data
 - 2. Submittal Cover Sheet: Each submittal shall include a cover sheet containing:
 - a. Date
 - b. Project title and number
 - c. Architect/Engineer
 - d. Contractor and subcontractors' names and addresses
 - e. Supplier and manufacturer's names and addresses
 - f. Division of work (e.g., plumbing, heating, ventilating, etc.)
 - g. Description of item submitted (using project nomenclature) and relevant specification number
 - h. Notations of deviations from the contract documents
 - i. Other pertinent data
 - j. Provide space for Contractor's review stamps

- 3. Composition:
 - a. Submittals shall be submitted using specification sections and the project nomenclature for each item.
 - b. Individual submittal packages shall be prepared for items in each specification section. All items within a single specification section shall be packaged together where possible. An individual submittal may contain items from multiple specifications sections if the items are intimately linked (e.g., pumps and motors).
 - c. All sets shall contain an index of the items enclosed with a general topic description on the cover.
- 4. Content: Submittals shall include all fabrication, erection, layout, and setting drawings; manufacturers' standard drawings; schedules; descriptive literature, catalogs and brochures; performance and test data; electrical power criteria (e.g., voltage, phase, amps, horsepower, kW, etc.) wiring and control diagrams; Short Circuit Current Rating (SCCR); dimensions; shipping and operating weights; shipping splits; service clearances; and all other drawings and descriptive data of materials of construction as may be required to show that the materials, equipment or systems and the location thereof conform to the requirements of the contract documents.
- 5. Contractor's Approval Stamp:
 - a. The Contractor shall thoroughly review and approve all shop drawings before submitting them to the Architect/Engineer. The Contractor shall stamp, date and sign each submittal certifying it has been reviewed.
 - b. Unstamped submittals will be rejected.
 - c. The Contractor's review shall include, but not be limited to, verification of the following:
 - 1) Only approved manufacturers are used.
 - 2) Addenda items have been incorporated.
 - 3) Catalog numbers and options match those specified.
 - 4) Performance data matches that specified.
 - 5) Electrical characteristics and loads match those specified.
 - 6) Equipment connection locations, sizes, capacities, etc. have been coordinated with other affected trades.
 - 7) Dimensions and service clearances are suitable for the intended location.
 - 8) Equipment dimensions are coordinated with support steel, housekeeping pads, openings, etc.
 - 9) Constructability issues are resolved (e.g., weights and dimensions are suitable for getting the item into the building and into place, sinks fit into countertops, etc.).
 - d. The Contractor shall review, stamp and approve all subcontractors' submittals as described above.
 - e. The Contractor's approval stamp is required on all submittals. Approval will indicate the Contractor's review of all material and a complete understanding of exactly what is to be furnished. Contractor shall clearly mark all deviations from the contract documents on all submittals. If deviations are not marked by the Contractor, then the item shall be required to meet all drawing and specification requirements.
- 6. Submittal Identification and Markings:
 - a. The Contractor shall clearly mark each item with the same nomenclature applied on the drawings or in the specifications.
 - b. The Contractor shall clearly indicate the size, finish, material, etc.

- c. Where more than one model is shown on a manufacturer's sheet, the Contractor shall clearly indicate exactly which item and which data is intended.
- d. All marks and identifications on the submittals shall be unambiguous.
- 7. Schedule submittals to expedite the project. Coordinate submission of related items.
- 8. Identify variations from the contract documents and product or system limitations that may be detrimental to the successful performance of the completed work.
- 9. Reproduction of contract documents alone is not acceptable for submittals.
- 10. Incomplete submittals will be rejected without review. Partial submittals will only be reviewed with prior approval from the Architect/Engineer.
- 11. Submittals not required by the contract documents may be returned without review.
- 12. The Architect/Engineer's responsibility shall be to review one set of shop drawing submittals for each product. If the first submittal is incomplete or does not comply with the drawings and/or specifications, the Contractor shall be responsible to bear the cost for the Architect/Engineer to recheck and handle the additional shop drawing submittals.
- 13. Submittals shall be reviewed and approved by the Architect/Engineer before releasing any equipment for manufacture or shipment.
- 14. Contractor's responsibility for errors, omissions. or deviation from the contract documents in submittals is not relieved by the Architect/Engineer's approval.
- 15. Schedule shall allow for adequate time to perform orderly and proper review of submittals, including time for consultants and Owner if required, and resubmittals by Contractor if necessary, and to cause no delay in Work or in activities of Owner or other contractors.
 - a. Allow at least two weeks for Architect's/Engineer's review and processing of each submittal.
- 16. Architect/Engineer reserves the right to withhold action on a submittal which, in the Architect/Engineer's opinion, requires coordination with other submittals until related submittals are received. The Architect/Engineer will notify the Contractor, in writing, when they exercise this right.
- C. Electronic Submittal Procedures:
 - 1. Distribution: Use State provided Procore for submittals .
 - 2. Transmittals: Each submittal shall include an individual electronic letter of transmittal.
 - 3. Format: Electronic submittals shall be in PDF format only. Scanned copies, in PDF format, of paper originals are acceptable. Submittals that are not legible will be rejected. Do not set any permission restrictions on files; protected, locked, or secured documents will be rejected.
 - 4. File Names: Electronic submittal file names shall include the relevant specification section number followed by a description of the item submitted, as follows. Where possible, include the transmittal as the first page of the PDF instead of using multiple electronic files.
 - a. Submittal file name: 23 XX XX.description.YYYYMMDD
 - b. Transmittal file name: 23 XX XX.description.YYYYMMDD
 - 5. File Size: Files shall be transmitted via a pre-approved method. Larger files may require an alternative transfer method, which shall also be pre-approved.

1.09 SCHEDULE OF VALUES

- A. The requirements herein are in addition to the provisions of Division 01.
- B. Format:
 - 1. Use AIA Document Continuation Sheets G703 or another similar form approved by the Owner and Architect/Engineer.
 - 2. Submit in Excel format.
 - 3. Support values given with substantiating data.

C. Preparation:

- 1. Itemize work required by each specification section and list all providers. All work provided by subcontractors and major suppliers shall be listed on the Schedule of Values. List each subcontractor and supplier by company name.
- 2. Break down all costs into:
 - a. Material: Delivered cost of product with taxes paid.
 - b. Labor: Labor cost, excluding overhead and profit.
- D. Update Schedule of Values when:
 - 1. Indicated by Architect/Engineer.
 - 2. Change of subcontractor or supplier occurs.
 - 3. Change of product or equipment occurs.

1.10 CHANGE ORDERS

- A. A detailed material and labor takeoff shall be prepared for each change order, along with labor rates and markup percentages. Change orders shall be broken down by sheet or associated individual line item indicated in the change associated narrative, whichever provides the most detailed breakdown. Change orders with inadequate breakdown will be rejected.
- B. Itemized pricing with unit cost shall be provided from all distributors and associated subcontractors.
- C. Change order work shall not proceed until authorized.

1.11 EQUIPMENT SUPPLIERS' INSPECTION

- A. The following equipment shall not be placed in operation until a competent installation and service representative of the manufacturer has inspected the installation and certified that the equipment is properly installed, adjusted and lubricated; that preliminary operating instructions have been given; and that the equipment is ready for operation:
 - 1. Air Cooled Condensers
 - 2. Condensing Units
 - 3. Air Handling Unit
 - 4. Fire Seal Systems
- B. Contractor shall arrange for and obtain supplier's on-site inspection(s) at proper time(s) to assure each phase of equipment installation and/or connection is in accordance with the manufacturer's instructions. This includes the Owner furnished air handling unit and condensing unit.
- C. Submit copies of start-up reports to the Architect/Engineer and include copies of Owner's Operation and Maintenance Manuals.

1.12 PRODUCT DELIVERY, STORAGE, HANDLING & MAINTENANCE

- A. Exercise care in transporting and handling to avoid damage to materials. Store materials on the site to prevent damage. Keep materials clean, dry and free from harmful conditions. Immediately remove any materials that become wet or that are suspected of becoming contaminated with mold or other organisms.
- B. Protect equipment, components, and openings with airtight covers and exercise care at every stage of storage, handling, and installation of equipment to prevent airborne dust and dirt from entering or fouling equipment to include, but not limited to:
 - 1. Motor windings and ventilation openings.
 - 2. Bearings.
 - 3. Equipment Pipe and Accessories connections openings. (e.g. coil connections, etc.)
 - 4. Equipment Duct and Accessories connections openings. (e.g. AHU/RTU duct connections)
 - 5. Starter and control cabinets.

- 6. Heat transfer coils.
- 7. Pump Seals.
- C. Equipment and components that are visibly damaged or have been subject to environmental conditions prior to building turnover to Owner that could shorten the life of the component (for example, water damage, humidity, dust and debris, excessive hot or cold storage location, etc.) shall be repaired or replaced with new equipment or components without additional cost to the building owner.
- D. Keep all bearings properly lubricated and all belts properly tensioned and aligned.
- E. Coordinate the installation of heavy and large equipment with the General Contractor and/or Owner. If the Mechanical Contractor does not have prior documented experience in rigging and lifting similar equipment, he/she shall contract with a qualified lifting and rigging service that has similar documented experience. Follow all equipment lifting and support guidelines for handling and moving.
- F. Contractor is responsible for moving equipment into the building and/or site. Contractor shall review site prior to bid for path locations and any required building modifications to allow movement of equipment. Contractor shall coordinate the work with other trades.

1.13 NETWORK / INTERNET CONNECTED EQUIPMENT

A. These specifications may require certain equipment or systems to have network, Internet and/or remote access capability ("Network Capability"). Any requirement for Network Capability shall be interpreted only as a functional capability and is not to be construed as authority to connect or enable any Network Capability. Network Capability may only be connected or enabled with the express written consent of the Owner.

1.14 WARRANTY

- A. Provide one-year warranty, unless otherwise noted, to the Owner for all fixtures, equipment, materials, and workmanship.
- B. The warranty period for all work in this Division of the specifications shall commence on the date of final acceptance, unless a whole or partial system or any separate piece of equipment or component is put into use for the benefit of any party other than the installing contractor with prior written authorization. In this instance, the warranty period shall commence on the date when such whole system, partial system or separate piece of equipment or component is placed in operation and accepted in writing by the Owner.
- C. Warranty requirements shall extend to correction, without cost to the Owner, of all Work found to be defective or nonconforming to the contract documents. The Contractor shall bear the cost of correcting all damage resulting from defects or nonconformance with contract documents.
- D. The Mechanical Contractor shall be responsible for all warranty calls and shall coordinate with the equipment supplier/manufacturer for the owner purchased air handling unit and condensing unit warranty items.

1.15 INSURANCE

A. Contractor shall maintain insurance coverage as set forth in Division 0 of these specifications.

1.16 MATERIAL SUBSTITUTION

- A. Where several manufacturers' names are given, the scheduled manufacturer is the basis for job design and establishes the quality required.
- B. Equivalent equipment manufactured by the other listed manufacturers may be used. Contractor shall ensure that all items submitted by these other manufacturers meet all requirements of the drawings and specifications and fits in the allocated space. When using other listed manufacturers, the Contractor shall assume responsibility for any and all modifications necessary (including, but not limited to structural supports, electrical connections, piping and ductwork connections and arrangement, plumbing connections and rough-in, and regulatory agency approval, etc.) and coordinate such with other contractors.

- C. Any material, article or equipment of other unnamed manufacturers which will adequately perform the services and duties imposed by the design and is of a quality equal to or better than the material, article or equipment identified by the drawings and specifications may be used if approval is secured in writing from the Architect/Engineer not later than ten days prior to the bid opening.
- D. This Contractor assumes all costs incurred as a result of using the offered material, article or equipment, on the Contractors part or on the part of other Contractors whose work is affected.
- E. Refer to Division 01 for additional material substitution requirements.

1.17 PROJECT COMMISSIONING

A. The Contractor shall work with the Commissioning Agent (CxA) as described in Section 01 91 00 and 23 08 01 and provide all services as described in the Commissioning Plan.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.01 JOBSITE SAFETY

A. Neither the professional activities of the Architect/Engineer, nor the presence of the Architect/Engineer or the employees and subconsultants at a construction site, shall relieve the Contractor and other entity of their obligations, duties and responsibilities including, but not limited to, construction means, methods, sequence, techniques or procedures necessary for performing, superintending or coordinating all portions of the work of construction in accordance with the contract documents and any health or safety precautions required by any regulatory agencies. The Architect/Engineer and personnel have no authority to exercise any control over any construction contractor or other entity or their employees in connection with their work or any health or safety precautions. The Contractor is solely responsible for jobsite safety. The Architect/Engineer and the Architect/Engineer's consultants shall be indemnified and shall be made additional insureds under the Contractor's general liability insurance policy.

3.02 ENGINEER OBSERVATION OF WORK

- A. The Contractor shall provide seven (7) calendar days' notice to the Architect/Engineer prior to:
 - 1. Covering exterior walls, interior partitions and chases.
 - 2. Installing hard or suspended ceilings and soffits.
- B. The Architect/Engineer will have the opportunity to review the installation and provide a written report noting deficiencies requiring correction. The Contractor's schedule shall account for these reviews and show them as line items in the approved schedule.
- C. Above-Ceiling Final Observation
 - 1. All work above the ceilings must be complete prior to the Architect/Engineer's review. This includes, but is not limited to:
 - a. Pipe insulation is installed and fully sealed.
 - b. Pipe and duct wall penetrations are sealed.
 - c. Pipe identification and valve tags are installed.
 - d. Main, branch and flexible ducts are installed.
 - e. Diffusers, registers and grilles are installed and connected to ductwork.
 - 2. In order to prevent the Above-Ceiling Final Observation from occurring too early, the Contractor shall review the status of the work and certify, in writing, that the work is ready for the Above-Ceiling Final Observation.
 - 3. It is understood that if the Architect/Engineer finds the ceilings have been installed prior to this review and prior to 7 days elapsing, the Architect/Engineer may not recommend further payments to the contractor until such time as full access has been provided.

3.03 PROJECT CLOSEOUT

- A. The following paragraphs supplement the requirements of Division 01.
- B. Final Jobsite Observation:
 - 1. In order to prevent the Final Jobsite Observation from occurring too early, the Contractor is required to review the completion status of the project and certify that the job is ready for the final jobsite observation.
 - 2. Attached to the end of this section is a typical list of items that represent the degree of job completeness expected prior to requesting a review.
 - 3. Upon Contractor certification that the project is complete and ready for a final observation, the Contractor shall sign the attached certification and return it to the Architect/Engineer so that the final observation can be scheduled.
 - 4. It is understood that if the Architect/Engineer finds the job not ready for the final observation and that additional trips and observations are required to bring the project to completion, the costs incurred by the Architect/Engineer's additional time and expenses will be deducted from the Contractor's contract retainage prior to final payment at the completion of the job.
- C. Before final payment is authorized, this Contractor must submit the following:
 - 1. Operation and maintenance manuals with copies of approved shop drawings.
 - 2. Record documents including marked-up drawings and specifications.
 - 3. A report documenting the instructions given to the Owner's representatives complete with the number of hours spent in the instruction. The report shall bear the signature of an authorized agent of This Contractor and shall be signed by the Owner's representatives.
 - 4. Start-up reports on all equipment requiring a factory installation inspection or start-up.
 - 5. Provide spare parts, maintenance, and extra materials in quantities specified in individual specification sections. Deliver to project site and place in location as directed; receipt by Architect/Engineer required prior to final payment approval.

3.04 OPERATION AND MAINTENANCE MANUALS

- A. General:
 - 1. Provide an electronic copy of the O&M manuals as described below for Architect/Engineer's review and approval. The electronic copy shall be corrected as required to address the Architect/Engineer's comments. Once corrected, electronic copies and paper copies shall be distributed as directed by the Architect/Engineer.
 - 2. Approved O&M manuals shall be completed and in the Owner's possession prior to Owner's acceptance and at least 10 days prior to instruction of operating personnel.
- B. Electronic Submittal Procedures:
 - 1. Distribution: Submit via State provided ProCore.
 - 2. Transmittals: Each submittal shall include an individual electronic letter of transmittal.
 - 3. Format: Electronic submittals shall be in PDF format only. Scanned copies, in PDF format, of paper originals are acceptable. Submittals that are not legible will be rejected. Do not set any permission restrictions on files; protected, locked, or secured documents will be rejected.
 - 4. File Names: Electronic submittal file names shall include the relevant specification section number followed by a description of the item submitted, as follows. Where possible, include the transmittal as the first page of the PDF instead of using multiple electronic files.
 - a. O&M file name: O&M.div23.contractor.YYYYMMDD
 - b. Transmittal file name: O&Mtransmittal.div23.contractor.YYYYMMDD

- 5. Provide the Owner with an approved copy of the O&M manual on compact discs (CD), digital video discs (DVD), or flash drives with a permanently affixed label, printed with the title "Operation and Maintenance Instructions", title of the project and subject matter of disc/flash drive when multiple disc/flash drives are required.
- 6. All text shall be searchable.
- 7. Bookmarks shall be used, dividing information first by specification section, then systems, major equipment and finally individual items. All bookmark titles shall include the nomenclature used in the construction documents and shall be an active link to the first page of the section being referenced.
- C. Paper Copy Submittal Procedures:
 - 1. Once the electronic version of the manuals has been approved by the Architect/Engineer, one paper copies of the O&M manual shall be provided to the Owner. The content of the paper copies shall be identical to the corrected electronic copy.
 - 2. Binder Requirements: The Contractor shall submit O&M manuals in heavy duty, locking three ring binders. Incorporate clear vinyl sheet sleeves on the front cover and spine for slip-in labeling. "Peel and stick" labels are not acceptable. Sheet lifters shall be supplied at the front of each notebook. The three-ring binders shall be 1/2" (12mm) thicker than initial material to allow for future inserts. If more than one notebook is required, label in consecutive order. For example; 1 of 2, 2 of 2. No other form of binding is acceptable.
 - 3. Binder Labels: Label the front and spine of each binder with "Operation and Maintenance Instructions", title of project, and subject matter.
 - 4. Index Tabs: Divide information by specification section, major equipment, or systems using index tabs. All tab titling shall be clearly printed under reinforced plastic tabs. All equipment shall be labeled to match the identification in the construction documents.
- D. Operation and Maintenance Instructions shall include:
 - 1. Title Page: Include title page with project title, Architect, Engineer, Contractor, all subcontractors, and major equipment suppliers, with addresses, telephone numbers, website addresses, email addresses and point of contacts. Website URLs and email addresses shall be active links in the electronic submittal.
 - 2. Table of Contents: Include a table of contents describing specification section, systems, major equipment, and individual items.
 - 3. Copies of all final approved shop drawings and submittals. Include Architect's/Engineer's shop drawing review comments. Insert the individual shop drawing directly after the Operation and Maintenance information for the item(s) in the review form.
 - 4. Refer to Section 23 0900 for additional requirements for Temperature Control submittals.
 - 5. Copy of final approved test and balance reports.
 - 6. Copies of all factory inspections and/or equipment startup reports.
 - 7. Copies of warranties.
 - 8. Schematic electrical power/controls wiring diagrams of the equipment that have been updated for field conditions. Field wiring shall have label numbers to match drawings.
 - 9. Dimensional drawings of equipment.
 - 10. Capacities and utility consumption of equipment.
 - 11. Detailed parts lists with lists of suppliers.
 - 12. Operating procedures for each system.
 - 13. Maintenance schedule and procedures. Include a chart listing maintenance requirements and frequency.
 - 14. Repair procedures for major components.

- 15. List of lubricants in all equipment and recommended frequency of lubrication.
- 16. Instruction books, cards, and manuals furnished with the equipment.

3.05 INSTRUCTING THE OWNER'S REPRESENTATIVES

- A. Adequately instruct the Owner's designated representatives in the maintenance, care, and operation of all systems installed under this contract. The Mechanical Contractor shall coordinate with the air handling unit and condensing unit supplier/manufacturer for training.
- B. Provide verbal and written instructions to the Owner's representatives by FACTORY PERSONNEL in the care, maintenance, and operation of the equipment and systems.
- C. The Owner has the option to make a video recording of all instructions. Coordinate schedule of instructions to facilitate this recording.
- D. The instructions shall include:
 - 1. Explanation of all air handling systems.
 - 2. Temperature control system operation including calibration, adjustment and proper operating conditions of all sensors.
 - 3. Maintenance of equipment.
 - 4. Start-up procedures for all major equipment.
 - 5. Explanation of seasonal system changes.
 - 6. Description of emergency system operation.
- E. Notify the Architect/Engineer of the time and place for the verbal instructions to be given to the Owner's representative so a representative can attend if desired.
- F. Minimum hours of instruction for each item shall be:
 - 1. Air Handling System and associated Refrigeration System 2 hours.
 - 2. Temperature Controls As defined in Section 23 0900.
- G. The Contractor shall prepare a detailed, written training agenda and submit it to the Architect/Engineer a minimum of two weeks prior to the formal training for approval. The written agenda shall include specific training points within the items described above. For example: how to adjust setpoints, troubleshooting, proper start-up, proper shut-down, seasonal changes, draining, venting, changing filters, changing belts, etc. Failure to provide and follow an approved training agenda may result in additional training required at the expense of the Contractor.
- H. Operating Instructions:
 - 1. Contractor is responsible for all instructions to the Owner's representatives for the mechanical and control systems.
 - 2. If the Contractor does not have staff that can adequately provide the required instructions the Contractor shall include in the bid an adequate amount to reimburse the Owner for the Architect/Engineer to perform these services.

3.06 SYSTEM STARTING AND ADJUSTING

- A. The mechanical systems shall be complete and operating. System startup, testing, adjusting, and balancing to obtain satisfactory system performance is the responsibility of the Contractor. This includes calibration and adjustments of all controls, noise level adjustments and final comfort adjustments as required.
- B. Complete all manufacturer-recommended startup procedures and checklists to verify proper motor rotation, electrical power voltage is within equipment limitations, equipment controls maintain pressures and temperatures within acceptable ranges, all filters and protective guards are in-place, acceptable access is provided for maintenance and servicing, and equipment operation does not pose a danger to personnel or property.
- C. Operate all HVAC systems continuously for at least one week prior to occupancy to bring construction materials to suitable moisture levels. Areas with mechanical cooling shall be maintained below 60% RH.

- D. Contractor shall adjust the mechanical systems and controls at season changes during the one year warranty period, as required, to provide satisfactory operation and to prove performance of all systems in all seasons.
- E. All operating conditions and control sequences shall be tested during the start-up period. Test all interlocks, safety shutdowns, controls, and alarms.
- F. The Contractor, subcontractors, and equipment suppliers shall have skilled technicians to ensure that all systems perform properly. The Mechanical Contractor shall coordinate with the air handling unit and condensing unit supplier/manufacturer for startup of these units. The Mechanical Contractor shall be present for the supplier/manufacturer startup. If the Architect/Engineer is requested to visit the job site for trouble shooting, assisting in start-up, obtaining satisfactory equipment operation, resolving installation and/or workmanship problems, equipment substitution issues or unsatisfactory system performance, including call backs during the warranty period, through no fault of the design; the Contractor shall reimburse the Owner on a time and materials basis for services rendered at the Architect/Engineer's standard hourly rates in effect when the services are requested. The Contractor shall pay the Owner for services required that are product, installation or workmanship related. Payment is due within 30 days after services are rendered.

3.07 RECORD DOCUMENTS

- A. The following paragraphs supplement Division 01 requirements.
- B. Maintain at the job site a separate and complete set of mechanical drawings and specifications with all changes made to the systems clearly and permanently marked in complete detail.
- C. Mark drawings to indicate revisions to piping and ductwork, size and location, both exterior and interior; including locations of coils, dampers, other control devices, filters, and other units requiring periodic maintenance or repair; actual equipment locations, dimensioned from column lines; actual inverts and locations of underground piping; concealed equipment, dimensioned from column lines; mains and branches of piping systems, with valves and control devices located and numbered, concealed unions located, and with items requiring maintenance located (e.g., traps, strainers, expansion compensators, tanks, etc.); Change Orders; concealed control system devices.
- D. Refer to Section 23 0900 for additional requirements for Temperature Control documents.
- E. Mark specifications to show approved substitutions; Change Orders, and actual equipment and materials used.
- F. Record changes daily and keep the marked drawings available for the Architect/Engineer's examination at any normal work time.
- G. Upon completing the job, and before final payment is made, give the marked-up drawings to the Architect/Engineer.

3.08 PAINTING

- A. Paint all equipment that is marred or damaged prior to the Owner's acceptance. Paint and color shall match original equipment paint and shall be obtained from the equipment supplier if available.
- B. Equipment in finished areas that will be painted to match the room decor will be painted by others. Should this Contractor install equipment in a finished area after the area has been painted, the Contractor shall have the equipment and all its supports, hangers, etc., painted to match the room decor.
- C. Equipment cabinets, casings, covers, metal jackets, etc., in equipment rooms or concealed spaces, shall be furnished in standard or prime finish, free from scratches, abrasions, chips, etc.
- D. Equipment in occupied spaces, or if standard to the unit, shall have a baked primer with baked enamel finish coat free from scratches, abrasions, chips, etc. If color option is specified or is standard to the unit, this Contractor shall, before ordering, verify with the Architect/Engineer the color preference and furnish this color.
- E. Paint all equipment in unfinished areas such as boiler room, mechanical spaces, storage room, etc., furnished by this Contractor. Equipment furnished with a factory coat of paint and enamel need not be painted, provided the factory applied finish is not marred or spattered. If so, equipment shall be refinished with the same paint as was factory applied.

- F. Paint all outdoor uninsulated steel piping the color selected by Owner or Architect/Engineer.
- G. After surfaces have been thoroughly cleaned and are free of oil, dirt, and other foreign matter; paint all pipes and equipment with the following:
 - 1. Bare Metal Surfaces Apply one coat of primer suitable for the metal being painted. Finish with two coats of Alkyd base enamel paint.
 - 2. Insulated Surfaces Paint insulation jackets with two coats of semi-gloss acrylic latex paint.

3.09 ADJUST AND CLEAN

- A. Thoroughly clean all equipment and systems prior to the Owner's final acceptance of the project. Clean all foreign paint, grease, oil, dirt, labels, stickers, and other foreign material from all equipment.
- B. Clean all drain pans and areas where moisture is present. Immediately report any mold, biological growth, or water damage.
- C. Remove all rust, scale, dirt, oils, stickers and thoroughly clean exterior of all exposed bare metal ductwork, piping, hangers, and accessories.
- D. Remove all rubbish, debris, etc., accumulated during construction from the premises.

3.10 SPECIAL REQUIREMENTS

- A. Contractor shall coordinate the installation of all equipment, valves, dampers, operators, etc., with other trades to maintain clear access area for servicing.
- B. All equipment shall be installed in such a way to maximize access to parts needing service or maintenance. Review the final field location, placement, and orientation of equipment with the Owner's designated representative prior to setting equipment.
- C. Installation of equipment or devices without regard to coordination of access requirements and confirmation with the Owner's designated representative will result in removal and reinstallation of the equipment at the Contractor's expense.

3.11 IAQ MAINTENANCE FOR OCCUPIED FACILITIES UNDER CONSTRUCTION

- A. Contractors shall make all reasonable efforts to prevent construction activities from affecting the air quality of the occupied areas of the building or outdoor areas near the building. These measures shall include, but not be limited to:
 - 1. All contractors shall endeavor to minimize the amount of contaminants generated during construction. Methods to be employed shall include, but not be limited to:
 - a. Minimizing the amount of dust generated.
 - b. Reducing solvent fumes and VOC emissions.
 - c. Maintain good housekeeping practices, including sweeping and periodic dust and debris removal. There should be no visible haze in the air.
 - d. Protect stored on-site and installed absorptive materials from moisture damage.
 - 2. Request that the Owner designate an IAQ representative.
 - 3. Review and receive approval from the Owner's IAQ representative for all IAQ-related construction activities and negative pressure containment plans.
 - 4. Inform the IAQ representative of all conditions that could adversely impact IAQ, including operations that will produce higher than normal dust production or odors.
 - 5. Schedule activities that may cause IAQ conditions that are not acceptable to the Owner's IAQ representative during unoccupied periods.
 - 6. Request copies of and follow all of the Owner's IAQ and infection control policies.
 - 7. Unless no other access is possible, the entrance to construction site shall not be through the existing facility.
 - 8. To minimize growth of infectious organisms, do not permit damp areas in or near the construction area to remain for over 24 hours.

- 9. In addition to the criteria above, provide measures as recommended in the SMACNA "IAQ Guidelines for Occupied Buildings Under Construction".
- 10. If permanently installed air handlers are used to serve both construction and occupied areas, all return grilles throughout construction areas shall be sealed to prevent air from construction areas being supplied to occupied areas.
- 11. If permanently installed air handlers are used during construction to serve only construction areas and do not supply air to adjacent occupied areas, MERV 8 filtration media shall be used to protect each return air grille or opening. The intent of this will be to prevent construction dust and debris from entering any return or supply air ductwork in the facility. All filtration media shall be replaced immediately prior to occupancy.

READINESS CERTIFICATION PRIOR TO FINAL JOBSITE OBSERVATION

To prevent the final job observation from occurring too early, we require that the Contractor review the completion status of the project and, by copy of this document, certify that the job is indeed ready for the final job observation. The following is a typical list of items that represent the degree of job completeness expected prior to your requesting a final job observation.

- 1. Penetrations fire sealed and labeled in accordance with specifications.
- 2. All air handling units operating and balanced.
- 3. All fans shall be operating and balanced.
- 4. All pumps operating and balanced.
- 5. All temperature control systems operating, programmed and calibrated.
- 6. Pipe insulation complete, pipes labeled, and valves tagged.

Accepted by:

Prime Contractor

By _____ Date _____

Upon Contractor certification that the project is complete and ready for a final job observation, we require the Contractor to sign this agreement and return it to the Architect/Engineer so that the final observation can be scheduled.

It is understood that if the Architect/Engineer finds the job not ready for the final observation and that additional trips and observations are required to bring the project to completion, the costs incurred by the Architect/Engineers for additional time and expenses will be deducted from the Contractor's contract retainage prior to final payment at the completion of the job.

END OF SECTION

SECTION 23 0503

THROUGH PENETRATION FIRESTOPPING

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. Through-Penetration Firestopping. All floors in the building are assumed to be fire rated and penetrations shall be treated as a 2-hr rated floor.

1.02 QUALITY ASSURANCE

- A. Manufacturer: Company specializing in manufacturing products specified in this Section.
- B. Installer: Individuals performing work shall be certified by the manufacturer of the system selected for installation.

1.03 SUBMITTALS

- A. Submit under provisions of Section 23 0500.
- B. Submit Firestopping Installers Certification for all installers on the project.
- C. Shop Drawings: Submit for each condition requiring firestopping. Include descriptions of the specific penetrating item, actual wall/floor construction, manufacturer's installation instructions, and UL or Intertek / Warnock Hersey Assembly number.
- D. Through-Penetration Firestop System Schedule: Indicate locations of each through-penetration firestop system, along with the following information:
 - 1. Types of penetrating items.
 - 2. Types of constructions penetrated, including fire-resistance ratings and, where applicable, thicknesses of construction penetrated.
 - 3. Through-penetration firestop systems for each location identified by firestop design designation of qualified testing and inspecting agency.
 - 4. F ratings for each firestop system.
- E. Maintain a notebook on the job site at all times that contains copies of approved submittals for all through penetration firestopping to be installed. Notebook shall be made available to the Authority Having Jurisdiction at their request and turned over to the Owner at the end of construction as part of the O&M Manuals.

1.04 DELIVERY, STORAGE, AND HANDLING

- A. Store, protect and handle products on site. Accept material on site in factory containers and packing. Inspect for damage. Protect from deterioration or damage due to moisture, temperature changes, contaminants, or other causes. Follow manufacturer's instructions for storage.
- B. Install material prior to expiration of product shelf life.

1.05 PERFORMANCE REQUIREMENTS

- A. General: For penetrations through the following fire-resistance-rated constructions, including both empty openings and openings containing penetrating items, provide through-penetration firestop systems that are produced and installed to resist spread of fire according to requirements indicated, resist passage of smoke and other gases, and maintain original fire-resistance rating of construction penetrated.
 - 1. Fire-resistance-rated walls including fire partitions, fire barriers, and smoke barriers.
 - 2. Fire-resistance-rated horizontal assemblies including floors, floor/ceiling assemblies, and ceiling membranes of roof/ceiling assemblies.
- B. Rated Systems: Provide through-penetration firestop systems with the following ratings determined per UL 1479:
 - 1. F-Rated Systems: Provide through-penetration firestop systems with F-ratings indicated, but not less than that equaling or exceeding fire-resistance rating of constructions penetrated.

- 2. L-Rated Systems: Provide through-penetration firestop systems with L-ratings of not more than 5.0 CFM/sq. ft at both ambient temperature and 400°F for smoke barriers.
- C. For through-penetration firestop systems exposed to light, traffic, moisture, or physical damage, provide products that, after curing, do not deteriorate when exposed to these conditions both during and after construction.
- D. For through-penetration firestop systems exposed to view, provide products with flame-spread and smoke-developed indexes of less than 25 and 450, respectively, as determined per ASTM E 84.
- E. For through-penetration firestop systems in air plenums, provide products with flame-spread and smokedeveloped indexes of less than 25 and 50, respectively, as determined per ASTM E 84.

1.06 MEETINGS

- A. Pre-installation meeting: A pre-installation meeting shall be scheduled and shall include the Construction Manager, General Contractor, all Subcontractors associated with the installation of systems penetrating fire barriers, Firestopping Manufacturer's Representative, and the Owner.
 - 1. Review foreseeable methods related to firestopping work.
 - 2. Tour representative areas where firestopping is to be installed; inspect and discuss each type of condition and each type of substrate that will be encountered, and preparation to be performed by other trades.

1.07 WARRANTY

- A. Provide one year warranty on parts and labor.
- B. Warranty shall cover repair or replacement of firestop systems which fail in joint adhesion, cohesion, abrasion resistance, weather resistance, extrusion resistance, migration resistance, stain resistance, general durability, or appear to deteriorate in any manner not clearly specified by the manufacturer as an inherent quality of the material.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

- A. Products: Subject to compliance with requirements, provide one of the through-penetration firestop systems indicated for each application that are produced by one of the following manufacturers. All firestopping systems installed shall be provided by a single manufacturer.
 - 1. 3M; Fire Protection Products Division.
 - 2. Hilti, Inc.
 - 3. RectorSeal Corporation, Metacaulk.
 - 4. Tremco; Sealant/Weatherproofing Division.
 - 5. Johns-Manville.
 - 6. Specified Technologies Inc. (S.T.I.)
 - 7. Spec Seal Firestop Products
 - 8. AD Firebarrier Protection Systems
 - 9. Dow Corning Corp.
 - 10. Fire Trak Corp.
 - 11. International Protective Coating Corp.
 - 12. HoldRite

2.02 THROUGH PENETRATION FIRESTOP SYSTEMS

- A. Provide materials and systems classified by or listed by Intertek / Warnock Hersey to provide firestopping equal to time rating of construction being penetrated.
- B. All firestopping materials shall be free of asbestos, lead, PCB's, and other materials that would require hazardous waste removal.

- C. Firestopping shall be flexible to allow for normal penetrating item movement due to expansion and contraction.
- D. Firestopping systems for plumbing and wet pipe sprinkler piping shall be moisture resistant.
- E. Provide firestopping systems capable of supporting floor loads where systems are exposed to possible floor loading or traffic.
- F. Provide firestopping systems allowing continuous insulation for all insulated pipes.
- G. Provide firestopping systems classified by UL or listed by Intertek / Warnock Hersey for penetrations through all fire rated construction. Firestopping systems shall be selected from the UL or listed by Intertek / Warnock Hersey Fire Resistance Directory Category XHEZ based on substrate construction and penetrating item size and material and shall fall within the range of numbers listed:
 - 1. Combustible Framed Floors and Chase Walls 1 or 2 Hour Rated:
 - a. F Rating = Floor/Wall Rating
 - b. L Rating = Penetrations in Smoke Barriers

Penetrating Item	UL System No.			
No Penetrating Item	FC 0000-0999*			
Metallic Pipe or Conduit	FC 1000-1999			
Non-Metallic Pipe or Conduit	FC 2000-2999			
Electrical Cables	FC 3000-3999			
Cable Trays	FC 4000-4999			
Insulated Pipes	FC 5000-5999			
Bus Duct and Misc. Electrical	FC 6000-6999			
Duct without Damper and Misc. Mechanical	FC 7000-7999			
Multiple Penetrations	FC 8000-8999			
*Alternate method of firestopping is patching opening to match original rated construction.				

- 2. Non-Combustible Framed Walls 1 or 2 Hour Rated:
 - a. F Rating = Wall Rating
 - b. L Rating = Penetrations in Smoke Barriers

Penetrating Item	UL System No.			
No Penetrating Item	WL 0000-0999*			
Metallic Pipe or Conduit	WL 1000-1999			
Non-Metallic Pipe or Conduit	WL 2000-2999			
Electrical Cables	WL 3000-3999			
Cable Trays	WL 4000-4999			
Insulated Pipes	WL 5000-5999			
Bus Duct and Misc. Electrical	WL 6000-6999			
Duct without Damper and Misc. Mechanical	WL 7000-7999			
Multiple Penetrations	WL 8000-8999			
*Alternate method of firestopping is patching opening to match original rated construction.				

- 3. Concrete or Masonry Floors and Walls 1 or 2 Hour Rated:
 - a. F Rating = Wall/Floor Rating
 - b. L Rating = Penetrations in Smoke Barriers

Penetrating Item	UL System No.			
No Penetrating Item	CAJ 0000-0999*			
Metallic Pipe or Conduit	CAJ 1000-1999			
Non-Metallic Pipe or Conduit	CAJ 2000-2999			
Electrical Cables	CAJ 3000-3999			
Cable Trays	CAJ 4000-4999			
Insulated Pipes	CAJ 5000-5999			
Bus Duct and Misc. Electrical	CAJ 6000-6999			
Duct without Damper and Misc. Mechanical	CAJ 7000-7999			
Multiple Penetrations	CAJ 8000-8999			
*Alternate method of firestopping is patching opening to match				

original rated construction.

- H. Any opening in walls or floors not covered by the listed series of numbers shall be coordinated with the firestopping manufacturer.
- I. Any openings in floors or walls not described in the UL or listed by Intertek / Warnock Hersey Fire Resistance Directory, or outlined in manufacturer's information shall be sealed in a manner agreed upon by the Firestopping Manufacturer, Owner, and the Authority Having Jurisdiction.

PART 3 - EXECUTION

3.01 EXAMINATION

- A. Ensure all surfaces that contact seal materials are free of dirt, dust, grease, oil, rust, or loose materials. Clean and repair surfaces as required. Remove laitance and form-release agents from concrete.
- B. Ensure substrate and penetrating items have been permanently installed prior to installing firestopping systems. Ensure penetrating items have been properly spaced and have proper clearance prior to installing firestopping systems.
- C. Surfaces to which sealing materials are to be installed must meet the selected UL or Intertek / Warnock Hersey system substrate criteria.
- D. Prime substrates where recommended in writing by through-penetration firestop system manufacturer. Confine primer to area of bond.

3.02 INSTALLATION

- A. In existing construction, provide firestopping of openings prior to and after installation of penetrating items. Remove any existing coatings on surfaces prior to firestopping installation. Temporary firestopping shall consist of packing openings with fire resistant mineral wool for the full thickness of substrate, or an alternate method approved by the Authority Having Jurisdiction. All openings shall be temporarily firestopped immediately upon their installation and shall remain so until the permanent UL or listed by Intertek / Warnock Hersey listed firestopping system is installed.
- B. Install penetration seal materials in accordance with printed instructions of the UL or Intertek / Warnock Hersey Fire Resistance Directory and with the manufacturer's printed application instructions.
- C. Install dams as required to properly contain firestopping materials within openings and as required to achieve required fire resistance rating. Remove combustible damming after appropriate curing.

3.03 CLEANING AND PROTECTING

- A. Clean excess fill materials adjacent to openings as Work progresses by methods and with cleaning materials that are approved in writing by through-penetration firestop system manufacturers and that do not cause damage.
- B. Provide final protection and maintain conditions during and after installation that ensure that throughpenetration firestop systems are without damage or deterioration at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, remove damaged or deteriorated throughpenetration firestop systems immediately and install new materials to produce systems complying with specified requirements.

3.04 INSPECTION

- A. All penetrations shall be inspected by the manufacturer's representative to ensure proper installation.
- B. Access to firestop systems shall be maintained for examination by the Authority Having Jurisdiction at their request.
- C. Proceed with enclosing through-penetration firestop system with other construction only after inspection reports are issued and firestop installations comply with requirements.
- D. The Contractor shall allow for visual destructive review of 5% of installed firestop systems (minimum of one) to prove compliance with specifications and manufacturer's instructions and details. Destructive system removal shall be performed by the Contractor and witnessed by the Architect/Engineer and manufacturer's factory representative. The Architect/Engineer shall have sole discretion of which firestop system installations will be reviewed. The Contractor is responsible for all costs associated with this requirement including labor and material for removing and replacing the installed firestop system. If any firestop system is found to not be installed per manufacturer's specific instructions and details, all firestop systems are subject to destructive review and replacement at the Architect/Engineer's discretion and the Contractor's expense.

END OF SECTION

SECTION 23 0505

HVAC DEMOLITION FOR REMODELING

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Mechanical demolition.
- B. Cutting and Patching.

PART 2 - PRODUCTS

2.01 MATERIALS AND EQUIPMENT

A. Materials and equipment shall be as specified in individual Sections.

PART 3 - EXECUTION

3.01 EXAMINATION

- A. THE DRAWINGS ARE INTENDED TO INDICATE THE GENERAL SCOPE OF WORK AND DO NOT SHOW EVERY PIPE, DUCT, OR PIECE OF EQUIPMENT THAT MUST BE REMOVED. THE CONTRACTOR SHALL VISIT THE SITE AND VERIFY CONDITIONS PRIOR TO SUBMITTING A BID.
- B. Where walls, ceilings, etc., are shown as being removed on general drawings, the Contractor shall remove all mechanical equipment, devices, fixtures, piping, ducts, systems, etc., from the removed area.
- C. Where ceilings, walls, partitions, etc., are temporarily removed and replaced by others, This Contractor shall remove, store, and replace equipment, devices, fixtures, pipes, ducts, systems, etc.
- D. Verify that abandoned utilities serve only abandoned equipment or facilities. Extend services to facilities or equipment that shall remain in operation following demolition.
- E. Coordinate work with all other Contractors and the Owner. Schedule removal of equipment to avoid conflicts.
- F. This Contractor shall verify all existing equipment sizes and capacities where equipment is scheduled to be replaced or modified, prior to ordering new equipment.
- G. Bid submittal shall mean the Contractor has visited the project site and verified existing conditions and scope of work.

3.02 PREPARATION

- A. Disconnect mechanical systems in walls, floors, and ceilings scheduled for removal.
- B. Provide temporary connections to maintain existing systems in service during construction. When work must be performed on operating equipment, use personnel experienced in such operations.
- C. Existing Heating System: Maintain existing system in service until new system is complete and ready for service. Drain system only to make switchovers and connections. Obtain permission from the Owner at least 48 hours before partially or completely draining system. Minimize outage duration.

3.03 DEMOLITION AND EXTENSION OF EXISTING MECHANICAL WORK

- A. Demolish and extend existing mechanical work under provisions of this Section.
- B. Remove, relocate, and extend existing installations to accommodate new construction.
- C. Remove abandoned ducts and piping to source of supply and/or main lines.
- D. Remove exposed abandoned pipes and ducts, including abandoned pipes and ducts above accessible ceilings. Cut ducts flush with walls and floors, cap duct that remains, and patch surfaces. Cut pipes above ceilings, below floors and behind walls. Cap remaining lines. Repair building construction to match original. Remove all clamps, hangers, supports, etc. associated with pipe and duct removal.
- E. Disconnect and remove mechanical devices and equipment serving equipment that has been removed.
- F. Repair adjacent construction and finishes damaged during demolition and extension work.
- G. Maintain access to existing mechanical installations which remain. Modify installation or provide access panels as appropriate.

- H. Extend existing installations using materials and methods compatible with existing installations, or as specified.
- I. Properly reclaim and dispose of all refrigerant in demolished equipment and as required for extension of existing equipment.

3.04 CUTTING AND PATCHING

- A. This Contractor is responsible for all penetrations of existing construction required to complete the work of this project. Refer to Section 23 0529 for additional requirements.
- B. Penetrations in existing construction should be reviewed carefully prior to proceeding with any work.
- C. Penetrations shall be neat and clean with smooth and/or finished edges. Core drill where possible for clean opening.
- D. Repair existing construction as required after penetration is complete to restore to original condition. Use similar materials and match adjacent construction unless otherwise noted or agreed to by the Architect/Engineer prior to start of work.
- E. Floor slabs may contain conduit systems. This Contractor is responsible for taking any measures required to ensure no conduits or other services are damaged. This includes X-ray or similar non-destructive means.
- F. This Contractor is responsible for <u>all</u> costs incurred in repair, relocations, or replacement of any cables, conduits, or other services if damaged without proper investigation.

3.05 CLEANING AND REPAIR

- A. Clean and repair existing materials and equipment which remain or are to be reused.
- B. Clean all systems adjacent to project which are affected by the dust and debris caused by this construction.
- C. MECHANICAL ITEMS REMOVED AND NOT RELOCATED REMAIN THE PROPERTY OF THE OWNER. CONTRACTOR SHALL PLACE ITEMS RETAINED BY THE OWNER IN A LOCATION COORDINATED WITH THE OWNER. THE CONTRACTOR SHALL DISPOSE OF MATERIAL THE OWNER DOES NOT WANT TO REUSE OR RETAIN FOR MAINTENANCE PURPOSES.

END OF SECTION

SECTION 23 0513 MOTORS

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. Single Phase and Three Phase Electric Motors.

1.02 SUBMITTALS

- A. Submit shop drawings under provisions of Section 23 0500. Include nominal efficiency and power factor for all premium efficiency motors. Efficiencies must meet or exceed the nominal energy efficiency levels presented below.
- B. Submit shop drawings for <u>all</u> three phase motors.
- C. Submit motor data with equipment when motor is installed by the manufacturer at the factory.
- D. Submit shaft grounding rings or brushes or ceramic bearings for all motors as required.

1.03 DELIVERY, STORAGE, AND HANDLING

A. Protect motors stored on site from weather and moisture by maintaining factory covers and suitable weatherproof coverings. For extended outdoor storage, follow manufacturer's recommendations for equipment and motor.

1.04 OPERATION AND MAINTENANCE DATA

A. Submit operation and maintenance data including assembly drawings, bearing data including replacement sizes, and lubrication instructions.

PART 2 - PRODUCTS

2.01 MOTORS - GENERAL CONSTRUCTION AND REQUIREMENTS

A. Refer to the drawings for required electrical characteristics. Voltage is generally specified and scheduled as distribution voltage. Motor submittals may be based on utilization voltage if it corresponds to the correct distribution voltage.

Distribution/Nominal Voltage	Utilization Voltage		
120	115		
208	200		
240	230		
277	265		
480	460		

- B. Design motors for continuous operation in 40°C environment, and for temperature rise in accordance with ANSI/NEMA MG 1 limits for insulation class, service factor, and motor enclosure type.
- C. Visible Nameplate: Indicating horsepower, voltage, phase, hertz, RPM, full load amps, locked rotor amps, frame size, manufacturer's name and model number, service factor, power factor, insulation class.
- D. Electrical Connection: Boxes, threaded for conduit. For fractional horsepower motors where connection is made directly, provide conduit connection in end frame.
- E. Unless otherwise indicated, motors 3/4 HP and smaller shall be single phase, 60 hertz, open drip-proof or totally enclosed fan-cooled type.
- F. Unless otherwise indicated, motors 1 HP and larger shall be three phase, 60 hertz, squirrel cage type, NEMA Design Code B (low current in-rush, normal starting torque), open drip-proof or totally enclosed fan-cooled type.
- G. Each contractor shall set all motors furnished by him.

- H. All motors shall have a minimum service factor of 1.15.
- I. All motors shall have ball or roller bearings with a minimum L-10 fatigue life of 150,000 hours in directcoupled applications and 50,000 hours for belted applications. Belted rating shall be based on radial loads and pulley sizes called out in NEMA MG1-14.43.
- J. Bearings shall be sealed type for 10 HP and smaller motors. Bearings shall be regreasable type for larger motors.
- K. Motor Driven Equipment:
 - 1. No equipment shall be selected or operate above 90% of its motor nameplate rating. Motor size may not be increased to compensate for equipment with efficiency lower than that specified.
 - 2. If a larger motor than specified is required on equipment, the contractor supplying the equipment is responsible for all additional costs due to larger starters, wiring, etc.
- L. Provide all belted motors with a means of moving and securing the motor to tighten belts. Motors over 2 HP shall have screw type tension adjustment.
- M. Motors for fans and pumps 1/12 HP or greater and less than 1 HP shall be electronically-commutated motors or shall have a minimum motor efficiency of 70% when rated in accordance with DOE 10 CFR 431. These motors shall also have the means to adjust motor speed for either balancing or remote control. Belt-driven fans may use sheave adjustments for airflow balancing in lieu of varying motor speed.

2.02 ELECTRONICALLY COMMUTATED MOTORS (ECM)

- Motor shall be variable speed, constant torque, brushless DC motor for direct-drive applications.
 Electronics shall be encapsulated for moisture protection and shall integral surge protection. Motor shall be pre-wired for specific voltage and phase.
- B. Motor frame shall be NEMA 48; UL recognized components shall be provided for the motor construction.
- C. All EC motors shall be a minimum of 85% efficient at all speeds.
- D. Motors shall be permanently lubricated; utilize ball bearings to match with the connected driven equipment.
- E. Provide motor with on-board motor control module. Motor speed shall be limited to provide electronic over current protection. Starter shall provide soft start to reduce inrush current and shall be controllable from 20% to 100% of full rated speed.
- F. Operational mode shall be as scheduled and shall be one of the following:
 - 1. Constant Flow
 - 2. Constant Temperature
 - 3. Constant Pressure

2.03 PREMIUM EFFICIENCY MOTORS (INCLUDING MOST 3-PHASE GENERAL PURPOSE MOTORS)

A. All motors, unless exempted by EPAct legislation that became federal law on December 19, 2010, shall comply with the efficiencies listed in that standard, which are reprinted below. These match the 2010 NEMA premium efficiency ratings. All ratings listed are nominal full load efficiencies, verified in accordance with IEEE Standard 112, Test Method B. Average expected (not guaranteed minimum) power factors shall also be at least the following:

	Full-Load Efficiencies %					
	Open Drip-Proof			Totally Er	nclosed Fai	n Cooled
HP	1200 rpm	1800 rpm	3600 rpm	1200 rpm	1800 rpm	3600 rpm
1.0	82.5	85.5	77.0	82.5	85.5	77.0
1.5	86.5	86.5	84.0	87.5	86.5	84.0
2.0	87.5	86.5	85.5	88.5	86.5	85.5

	Full-Load Efficiencies %					
	Open Drip-Proof			Totally Er	nclosed Fai	n Cooled
HP	1200	1800	3600	1200	1800	3600
	rpm	rpm	rpm	rpm	rpm	rpm
3.0	88.5	89.5	85.5	89.5	89.5	86.5
5.0	89.5	89.5	86.5	89.5	89.5	88.5
7.5	90.2	91.0	88.5	91.0	91.7	89.5

B. Motor nameplate shall be noted with the above ratings.

2.04 MOTORS ON VARIABLE FREQUENCY DRIVES

- A. All motors driven by VFDs shall be premium efficiency type.
- B. Motors shall be designed for use with VFDs in variable torque applications with 1.15 service factor. Motors shall <u>not</u> be equipped with auxiliary blowers.
- C. Motors driven by VFDs shall have Class F or H insulation and be designated by the motor manufacturer to be suitable for inverter duty service in accordance with NEMA MG 1 Section IV, "Performance Standards Applying to All Machines," Part 31 "Definite-Purpose Inverter-Fed Polyphase Motors.
- D. All 480 volt motors driven by VFDs shall be provided with shaft grounding rings or grounding brushes or ceramic bearings as a means to protect bearings from adverse shaft currents.
 - 1. Providing grounding rings internal to the motor housing is an acceptable solution, provided the motor is affixed with a label clearly indicating the presence of a grounding assembly. The grounding ring shall be listed for 40,000 hours of motor service and shall be accessible via the drive endplate.
 - 2. Motor shafts 2" and larger require shaft grounding on the drive end and the non-drive end. This Contractor shall ensure (via field observation and measurement) that the shaft is effectively grounded upon startup.

2.05 SHEAVES

- A. All sheaves shall conform to NEMA Standard MG1-14.42, which lists minimum diameters and maximum overhangs. Locate motors to minimize overhang.
- B. When replacing sheaves, use sheaves of at least the originally supplied sizes.
- C. Contractor responsible for motor shall also be responsible for replacement sheaves. Coordinate with testing and balancing of the equipment.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. All rotating shafts and/or equipment shall be completely guarded from all contact. Partial guards and/or guards that do not meet all applicable OSHA standards are not acceptable. Contractor is responsible for providing this guarding if it is not provided with the equipment supplied.
- B. For flexible coupled drive motors, mount coupling to the shafts in accordance with the coupling manufacturer's recommendations. Align shafts to manufacturer's requirements or within 0.002 inch per inch diameter of coupling hub.
- C. For belt drive motors, mount sheaves on the appropriate shafts per manufacturer's instructions. Use a straight edge to check alignment of the sheaves. Reposition sheaves as necessary so the straight edge contacts both sheave faces squarely. After sheaves are aligned, loosen the adjustable motor base so the belt(s) can be added, and tighten the base so the belt tension is in accordance with the drive manufacturer's recommendations. Frequently check belt tension and adjust if necessary during the first day of operation and again after 80 hours of operation.

END OF SECTION

SECTION 23 0529

HVAC SUPPORTS AND ANCHORS

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Hangers, Supports, and Associated Anchors.
- B. Equipment Bases and Supports.
- C. Sleeves and Seals.
- D. Flashing and Sealing of Equipment and Pipe Stacks.
- E. Cutting of Openings.
- F. Escutcheon Plates and Trim.

1.02 SUBMITTALS

A. Submit shop drawings and product data under provisions of Section 23 0500. Include plastic pipe manufacturers' support spacing requirements.

PART 2 - PRODUCTS

2.01 HANGER RODS

- A. Hanger rods for single rod hangers shall conform to the following:
 - 1. Steel Pipe:
 - a. Hanger Rod Diameter:
 - 1) 2-1/2" and smaller: 3/8"
 - 2) 3" through 3-5/8": 3/8"
 - 2. Copper Pipe:
 - a. Hanger Rod Diameter:
 - 1) 2-1/2" and smaller: 3/8"
 - 2) 3" through 3-5/8": 3/8"
- B. Rods for double rod hangers may be reduced one size. Minimum rod diameter is 3/8 inches.
- C. Hanger rods and accessories used in mechanical spaces or otherwise dry areas shall have ASTM B633 electro-plated zinc finish.
- D. All hanger rods, nuts, washers, clevises, etc., in damp areas shall have ASTM A123 hot-dip galvanized finish applied after fabrication. This applies to the following areas:
 - 1. Exterior Locations.

2.02 PIPE AND STRUCTURAL SUPPORTS

- A. General:
 - 1. Pipe hangers, clamps, and supports shall conform to Manufacturers Standardization Society MSS SP-58, -69, -89, and -127 (where applicable).
 - 2. On all insulated piping, provide at each support an insert of same thickness and contour as adjoining insulation, between the pipe and insulation jacket, to prevent insulation from sagging and crushing. Refer to insulation specifications for materials and additional information.
- B. Vertical Supports:
 - 1. Support and laterally brace vertical pipes at every floor level in multi-story structures, unless otherwise noted by applicable codes, but never at intervals over 15 feet. Support vertical pipes with riser clamps installed below hubs, couplings, or lugs. Provide sufficient flexibility to accommodate expansion and contraction to avoid compromising fire barrier penetrations or stressing piping at fixed takeoff locations.

- a. Products:
 - 1) Eaton Fig B3373 Series
 - 2) nVent 510 Series
 - 3) Anvil Fig. 90
- 2. Cold Pipe: Place restrained neoprene mounts beneath vertical pipe riser clamps to prevent sweating of cold pipes. Select neoprene mounts based on the weight of the pipe to be supported. Insulate over mounts.
 - a. Products:
 - 1) Mason RBA, RCA or RDA
 - 2) Mason BR
- 3. Cold Pipe Alternative: Insulated pipe riser clamp with no thermal bridging between clamp and pipe; water repellant calcium silicate insulation material adhered inside the clamp; ASTM A653 galvanized steel clamp.
 - a. Products:
 - 1) Pipeshields E100
- 4. Wall supports shall be used where vertical height of structure exceeds minimum spacing requirements. Install wall supports at same spacing as hangers or strut supports along vertical length of pipe runs.
- 5. Masonry Anchors: Fasten to concrete masonry units with expansion anchors or self-tapping masonry screws. For expansion anchors into hollow concrete block, use sleeve-type anchors designed for the specific application. Do not fasten in masonry joints. Do not use powder actuated fasteners, wooden plugs, or plastic inserts.
- C. Hangers and Clamps:
 - 1. Oversize all hangers, clamps, and supports on insulated piping to allow insulation and jacket to pass through unbroken. This applies to both hot and cold pipes.
 - Hangers in direct contact with bare copper pipe shall include plastic pipe insert similar to Unistrut Cush-A-Clamp, Hydra-Zorb, nVent Cushion Clamp or Eaton Vibra-Clamp within their temperature limits of -65°F to +275°F.
 - 3. On all insulated piping, provide a semi-cylindrical metallic shield and vapor barrier jacket.
 - 4. Ferrous hot piping 4 inches and larger shall have steel saddles tack welded to the pipe at each support with a depth not less than specified for the insulation. Factory fabricated inserts may be used.
 - a. Products:
 - 1) Anvil Fig. 160, 161, 162, 163, 164, 165
 - 2) Eaton Fig. 3160, 3161, 3162, 3163, 3164, 3165
 - 3) nVent Model 630, 631, 632, 633, 634, 635
 - 5. Unless otherwise indicated, hangers shall be as follows:
 - a. Clevis Type: Service: Bare Metal Pipe, Insulated Cold Pipe, Insulated Hot Pipe 3 inches and Smaller:
 - 1) Products: Bare Steel, Plastic or Insulated Pipe:
 - a) Anvil Fig. 260
 - b) Eaton Fig. 3100
 - c) nVent Model 400

- 2) Products: Bare Copper Pipe:
 - a) Eaton Fig. B3104F or B3100CTC
 - b) Anvil Fig. CT65
 - c) nVent Fig. 402
- b. Adjustable Swivel Ring Type: Service: Bare Metal Pipe 4 inches and Smaller:
 - 1) Products: Bare Steel Pipe:
 - a) Anvil Fig. 69
 - b) Eaton Fig. B3170NF
 - c) nVent Model 115
 - 2) Products: Bare Copper Pipe:
 - a) Eaton Fig. B3170CTC
 - b) nVent 102A0 Series
 - c) Anvil Fig. CT-69
- 6. Support may be fabricated from U-channel strut or similar shapes. Piping less than 4" in diameter shall be secured to strut with clamps of proper design and capacity as required to maintain spacing and alignment. Strut shall be independently supported from hanger drops or building structure. Size and support shall be per manufacturer's installation requirements for structural support of piping. Clamps shall not interrupt piping insulation.
 - a. Strut used in mechanical spaces or otherwise dry areas shall have ASTM B633 electroplated zinc finish.
 - b. Strut used in damp areas listed in hanger rods shall have ASTM A123 hot-dip galvanized finish applied after fabrication.
- 7. Unless otherwise indicated, pipe supports for use with struts shall be as follows:
 - a. Clamp Type: Service: Bare Metal Pipe, Insulated Cold Pipe, Insulated Hot Pipe 3 inches and smaller:
 - 1) Clamps in direct contact with copper pipe shall include plastic pipe insert similar to Unistrut Cush-A-Clamp, Hydra-Zorb, nVent Cushion Clamp or Eaton Vibra-Clamp.
 - 2) Pipes subject to expansion and contraction shall have clamps oversized to allow limited pipe movement.
 - 3) Products: Bare Steel, Plastic or Insulated Pipe:
 - a) Unistrut Fig. P1100 or P2500
 - b) Eaton Fig. B2000 or B2400
 - c) Anvil Fig. AS1200
 - d) nVent USC
 - 4) Products: Bare Copper Pipe:
 - a) Eaton Fig. BVT
 - b) nVent CADDY Cushion Clamp

- D. Upper (Structural) Attachments:
 - 1. Unless otherwise shown, upper attachments for hanger rods or support struts shall be as follows:
 - a. Steel Structure Clamps: C-Type Wide Flange Beam Clamps (for use on top and/or bottom of wide flanges. Not permitted for use with bar-joists.):
 - 1) Products:
 - a) Anvil Fig. 86
 - b) Eaton Fig. B3033/B3034
 - c) nVent Model 300 & 310
 - b. Scissor Type Beam Clamps (for use with bar-joists and wide flange):
 - 1) Products:
 - a) Anvil Fig. 228, 292
 - b) Eaton Fig. B3054
 - c) nVent Model 360
 - c. Concentrically Loaded Open Web Joist Hangers (for use with bar joists):
 - 1) Products:
 - a) MCL. M1, M2 or M3
 - d. Concrete Anchors: Fasten to concrete using cast-in or post-installed anchors designed per the requirements of Appendix D of ACI 318-14. Post-installed anchors shall be qualified for use in cracked concrete by ACI-355.2.
 - e. Masonry Anchors: Fasten to concrete masonry units with expansion anchors or self-tapping masonry screws. For expansion anchors into hollow concrete block, use sleeve-type anchors designed for the specific application. Do not fasten in masonry joints. Do not use powder actuated fasteners, wooden plugs, or plastic inserts.
 - f. Steel Structure Welding:
 - 1) Unless otherwise noted, hangers, clips, and auxiliary support steel may be welded in lieu of bolting, clamping, or riveting to the building structural frame. Take adequate precautions during all welding operations for fire prevention and protecting walls and ceilings from smoke damage.

2.03 FOUNDATIONS, BASES, AND SUPPORTS

- A. Basic Requirements:
 - 1. Furnish and install foundations, bases, and supports (not specifically indicated on the Drawings or in the Specifications of either the General Construction or Mechanical work as provided by another Contractor) for mechanical equipment.
 - 2. All concrete foundations, bases and supports, shall be reinforced. All steel bases and supports shall receive a prime coat of zinc chromate or red metal primer. After completion of work, give steel supports a final coat of gray enamel.
- B. Supports:
 - 1. Provide sufficient clips, inserts, hangers, racks, rods, and auxiliary steel to securely support all suspended material, equipment and conduit without sag.
 - 2. Hang heavy equipment from concrete floors or ceilings with Architect/Engineer-approved concrete inserts, furnished and installed by the Contractor whose work requires them, except where indicated otherwise.

C. Grout:

- 1. Grout shall be non-shrinking premixed (Master Builders Company "Embecco"), unless otherwise indicated on the drawings or approved by the Architect/Engineer.
- 2. Use Mix No. 1 for clearances of 1" or less, and Mix No. 2 for all larger clearances.
- 3. Grout under equipment bases, around pipes, at pipe sleeves, etc., and where shown on the drawings.

2.04 OPENINGS IN FLOORS, WALLS AND CEILINGS

- A. Exact locations of all openings for the installation of materials shall be determined by the Contractor and given to the General Contractor for installation or construction as the structure is built.
- B. Coordinate all openings with other Contractors.
- C. Hire the proper tradesman and furnish all labor, material and equipment to cut openings in or through existing structures, or openings in new structures that were not installed, or additional openings. Repair all spalling and damage to the satisfaction of the Architect/Engineer. Make saw cuts before breaking out concrete to ensure even and uniform opening edges.
- D. Said cutting shall be at the complete expense of each Contractor. Failure to coordinate openings with other Contractors shall not exempt the Contractor from providing openings at Contractor's expense.
- E. Do not cut structural members without written approval of the Architect or Structural Engineer.
- F. Exposed Housing Penetrations: Seal pipes with surface temperature below 150°F, penetrating housings with conical stepped, white silicone, EPDM or neoprene pipe flashings and stainless steel clamps equal to Portals Plus Pipe Boots or Pipetite.

2.05 SLEEVES

- A. Each Contractor shall provide sleeves for all pipe openings required for the Contractor's work in masonry walls and floors, unless specifically shown as being by others.
- B. Fabricate all sleeves from standard weight black steel pipe or as indicated on the drawings. Provide continuous sleeve. Cut or split sleeves are not acceptable.
- C. Sleeves through the floors on exposed risers shall be flush with the ceiling, with planed squared ends extending 1" above the floor in unfinished areas, and flush with the floor in finished areas, to accept spring closing floor plates.
- D. Install all sleeves concentric with pipes.
- E. Size sleeves large enough to allow expansion and contraction movement. Provide continuous insulation wrapping.
- F. Wall Seals ("Link-Seals"):
 - 1. Where shown on the drawings, pipes passing through walls, ceilings, or floors shall have their annular space (sleeve or drilled hole not tapered hole made with knockout plug) sealed by properly sized sealing elements consisting of a synthetic rubber material compounded to resist aging, ozone, sunlight, water and chemical action.
 - 2. Sleeves, if used, shall be standard weight steel with primed finish and waterstop/anchor continuously welded to sleeve. If piping carries only fluids below 120°F, sleeves may be thermoplastic with integral water seal and textured surface.
 - 3. Sleeves shall be at least 2 pipe sizes larger than the pipes.
 - 4. Pressure shall be maintained by stainless steel bolts and other parts. Pressure plates may be of composite material for Models S.
5. Sealing element shall be as follows:

		Element	
Model	Service	Material	Temperature Range
S	Standard (Stainless)	EPDM	-40°F to 250°F

- 6. Manufacturers:
 - a. Thunderline Corporation "Link-Seals"
 - b. O-Z/Gedney Company
 - c. Calpico, Inc.
 - d. Innerlynx
 - e. Metraflex Company (cold service only)
 - f. Polywater PHSD

2.06 ESCUTCHEON PLATES AND TRIM

- A. Fit escutcheons to all insulated or uninsulated exposed pipes passing through walls, floors, or ceilings of finished rooms.
- B. Escutcheons shall be heavy gauge, cold rolled steel, copper coated under a chromium plated finish, heavy spring clip, rigid hinge and latch.
- C. Install galvanized steel (unless otherwise indicated) trim strip to cover vacant space and raw construction edges of all rectangular openings in finished rooms. This includes pipe openings.

2.07 PIPE PENETRATIONS

- A. Seal all pipe penetrations. Seal non-rated walls and floor penetrations with grout or caulk. Backing material may be used.
- B. Seal fire rated wall and floor penetrations with fire seal system as specified.

2.08 PIPE ANCHORS

- A. Provide all items needed to allow adequate expansion and contraction of all piping. All piping shall be supported, guided, aligned, and anchored as required.
- B. Repair all piping leaks and associated damage. Pipes shall not rub on any part of the building.

2.09 FINISH

A. Prime coat exposed steel hangers and supports. Hangers and supports in crawl spaces, pipe shafts, and suspended ceiling spaces are not considered exposed.

PART 3 - EXECUTION

3.01 HVAC SUPPORTS AND ANCHORS

- A. General Installation Requirements:
 - 1. Install all items per manufacturer's instructions.
 - 2. Coordinate the location and method of support of piping systems with all installations under other Divisions and Sections of the Specifications.
 - 3. Where pipe support members are welded to structural building framing, scrape, brush clean, and apply one coat of zinc rich primer to welding.
 - 4. Supports shall extend directly to building structure. Do not support piping from duct hangers unless coordinated with Sheet Metal Contractor prior to installation. Do not allow lighting or ceiling supports to be hung from piping supports.

- B. Supports Requirements:
 - 1. Where building structural steel is fireproofed, all hangers, clamps, auxiliary steel, etc., which attach to it shall be installed prior to application of fireproofing. Repair all fireproofing damaged during pipe installation.
 - 2. Set all concrete inserts in place before pouring concrete.
 - 3. Furnish, install and prime all auxiliary structural steel for support of piping systems that are not shown on the Drawings as being by others.
 - 4. Install hangers and supports complete with lock nuts, clamps, rods, bolts, couplings, swivels, inserts and required accessories.
 - 5. Hangers for horizontal piping shall have adequate means of vertical adjustment for alignment.
- C. Pipe Requirements:
 - 1. Support all piping and equipment, including valves, strainers, traps and other specialties and accessories to avoid objectionable or excessive stress, deflection, swaying, sagging or vibration in the piping or building structure during erection, cleaning, testing and normal operation of the systems.
 - 2. Do not, however, restrain piping to cause it to snake or buckle between supports or to prevent proper movement due to expansion and contraction.
 - 3. Support piping at equipment and valves so they can be disconnected and removed without further supporting the piping.
 - 4. Piping shall not introduce strains or distortion to connected equipment.
 - 5. Parallel horizontal pipes may be supported on trapeze hangers made of structural shapes and hanger rods; otherwise, pipes shall be supported with individual hangers.
 - 6. Trapeze hangers may be used where ducts interfere with normal pipe hanging.
 - 7. Provide additional supports where pipe changes direction, adjacent to flanged valves and strainers, at equipment connections and heavy fittings.
 - 8. Provide at least one hanger adjacent to each joint in grooved end steel pipe with mechanical couplings.
- D. Provided the installation complies with all loading requirements of truss and joist manufacturers, the following practices are acceptable:
 - 1. Loads of 100 lbs. or less may be attached anywhere along the top or bottom chords of trusses or joists with a minimum 3' spacing between loads.
 - 2. Loads greater than 100 lbs. must be hung concentrically and may be hung from top or bottom chord, provided one of the following conditions is met:
 - a. The hanger is attached within 6" from a web/chord joint.
 - b. Additional L2x2x1/4 web reinforcement is installed per manufacturer's requirements.
 - 3. It is prohibited to cantilever a load using an angle or other structural component that is attached to a truss or joist in such a fashion that a torsional force is applied to that structural member.
 - 4. If conditions cannot be met, coordinate installation with truss or joist manufacturer and contact Architect/Engineer.
- E. After piping and insulation installation are complete, cut hanger rods back at trapeze supports so they do not extend more than 3/4" below bottom face of lowest fastener and blunt any sharp edges.
- F. Do not exceed 25 lbs. per hanger and a minimum spacing of 2'-0" on center when attaching to metal roof decking (limitation not required with concrete on metal deck). This 25 lbs. load and 2'-0" spacing include adjacent electrical and architectural items hanging from deck. If the hanger restrictions cannot be achieved, supplemental framing off steel framing will need to be added.
- G. Do not exceed the manufacturer's recommended maximum load for any hanger or support.

DOC ASP LUA A/C REPLACEMENT Anamosa, IA

- H. Steel/Concrete Structure: Spacing of hangers shall not exceed the compressive strength of the insulation inserts, and in no case shall exceed the following:
 - 1. Steel (Std. Weight or Heavier Liquid Service):
 - a. Maximum Spacing:
 - 1) 1-1/4" & under: 7'-0"
 - 2) 1-1/2": 9'-0"
 - 3) 2": 10'-0"
 - 4) 2-1/2": 11'-0"
 - 5) 3": 12'-0"
 - 2. Steel (Std. Weight or Heavier Vapor Service):
 - a. Maximum Spacing:
 - 1) 1-1/4" and under: 9'-0"
 - 2) 1-1/2": 12'-0"
 - 3) 2" & larger: 12'-0"
 - 3. Hard Drawn Copper & Brass (Liquid Service):
 - a. Maximum Spacing:
 - 1) 3/4" and under: 5'-0"
 - 2) 1": 6'-0"
 - 3) 1-1/4": 7'-0"
 - 4) 1-1/2" 8'-0"
 - 5) 2": 8'-0"
 - 6) 2-1/2": 9'-0"
 - 7) 3": 10'-0"
 - 4. Hard Drawn Copper & Brass (Vapor Service):
 - a. Maximum Spacing:
 - 1) 3/4" & under: 7'-0"
 - 2) 1": 8'-0"
 - 3) 1-1/4": 9'-0"
 - 4) 1-1/2": 10'-0"
 - 5) 2": 11'-0"
 - 6) 2-1/2" & larger: 12'-0"
- I. Installation of hangers shall conform to MSS SP-58, -69, and -89.

SECTION 23 0548 HVAC VIBRATION ISOLATION

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Bases.
- B. Vibration Isolation.
- C. Flexible Connectors.

1.02 SUBMITTALS

- A. Submit shop drawings per Section 23 0500 and the Vibration Isolation Submittal Form at the end of this section.
- B. Vibration isolation submittals may be included with equipment being isolated, but must comply with this section.
- C. Base submittals shall include equipment served, construction, coatings, weights, and dimensions.
- D. Isolator submittals shall include:
 - 1. Equipment served
 - 2. Type of Isolator
 - 3. Load in Pounds per Isolator
 - 4. Recommended Maximum Load for Isolator
 - 5. Spring Constants of Isolators (for Spring Isolators)
 - 6. Load vs. Deflection Curves (for Neoprene Isolators)
 - 7. Specified Deflection
 - 8. Deflection to Solid (at least 150% of calculated deflection)
 - 9. Loaded (Operating) Deflection
 - 10. Free Height
 - 11. Loaded Height
 - 12. Kx/Ky (horizontal to vertical stiffness ratio for spring isolators)
 - 13. Materials and Coatings
 - 14. Spring Diameters
- E. Make separate calculations for each isolator on equipment where the load is not equally distributed.
- F. Flexible connector shop drawings shall include overall face-to-face length and all specified properties.

PART 2 - PRODUCTS

2.01 BASIC CONSTRUCTION AND REQUIREMENT

- A. Vibration isolation for this project is subject to seismic restraint requirements of Section 23 0550.
- B. Vibration isolators shall have either known undeflected heights or other markings so deflection under load can be verified.
- C. All isolators shall operate in the linear portion of their load versus deflection curve. The linear portion of the deflection curve of all spring isolators shall extend 50% beyond the calculated operating deflection (e.g., 3" for 2" calculated deflection). The point of 50% additional deflection shall not exceed the recommended load rating of the isolator.
- D. The lateral to vertical stiffness ratio (Kx/Ky) of spring isolators shall be between 0.8 and 2.0.
- E. All neoprene shall have UV resistance sufficient for 20 years of outdoor service.

- F. All isolators shall be designed or treated for corrosion resistance. Steel bases shall be cleaned of welding slag and primed for interior use, and hot dip galvanized after fabrication for exterior use. All bolts and washers over 3/8" diameter located outdoors shall be hot dip galvanized per ASTM A153. All other bolts, nuts and washers shall be zinc electroplated. All ferrous portions of isolators, other than springs, for exterior use shall be hot dip galvanized after fabrication. Outdoor springs shall be neoprene dipped or hot dip galvanized. All damage to coatings shall be field repaired with two coats of zinc rich coating.
- G. Equip all mountings used with structural steel bases with height-saving brackets. Bottoms of the brackets shall be 1-1/2" to 2-1/2" above the floor or housekeeping pad, unless shown otherwise on the drawings. Steel bases shall have at least four points of support.
- H. Provide motor slide rails for belt-driven equipment per Section 23 0513.
- I. All isolators shall have provision for leveling.

2.02 MOUNTINGS

- A. Type M2:
 - 1. Double deflection neoprene with minimum static deflection of 0.15" at calculated load and 0.35" at maximum rated load.
 - a. All metal shall be neoprene covered. Mounting shall have friction pads both top and bottom.
 - 2. All units shall have bolt holes and be bolted down.
 - 3. Use steel rails above the mountings to compensate for the overhang of equipment such as small vent sets and close coupled pumps.
 - 4. Manufacturers:
 - a. Mason Industries "ND" or "DNR"
 - b. VMC/Amber-Booth "RVD"
 - c. Kinetics "RD"
 - d. Vibration Mountings and Controls "RD"
 - e. Vibration Eliminator Co. "T22" or "T44"
- B. Type M3:
 - 1. Free standing, laterally stable spring isolators without housings and complete with 1/4" neoprene friction pads.
 - 2. Units shall have bolt holes but need not be bolted down unless called for or needed to prevent movement. If bolted down, prevent short circuiting with neoprene bushings and washers between bolts and isolators. Bolt holes shall not be within the springs.
 - 3. All mountings shall have leveling bolts.
 - 4. Manufacturers:
 - a. Mason "SLFH"
 - b. Kinetics "FDS"
 - c. VMC/Amber-Booth SW-3 4", 5", or 6"
 - d. Vibration Eliminator Co. "OST"

2.03 HANGERS

- A. Type H1:
 - 1. Vibration hangers shall consist of a double-deflection neoprene element with a projecting bushing or oversized opening to prevent steel-to-steel contact.
 - 2. Static deflection shall be at least 0.15" at calculated load and 0.35" at maximum rated load.
 - 3. Provide hangers with end connections as required for hanging ductwork or piping.

- 4. Manufacturers:
 - a. Mason "HD"
 - b. Kinetics "RH"
 - c. Aeroflex "RHD"
 - d. Vibration Eliminator Co. "IC/3C/3CTD"
 - e. Vibro Acoustics "RH"
- B. Type H2:
 - 1. Vibration hangers shall contain a steel spring in a neoprene cup with a grommet to prevent short circuiting the hanger rod.
 - 2. The cup shall have a steel washer to distribute load on the neoprene and prevent its extrusion.
 - 3. Spring diameters and hanger box lower hole sizes shall be large enough to permit the hanger rod to swing through a 30° arc before contacting the grommet and short circuiting the spring.
 - 4. Provide end connections for hanging ductwork or piping.
 - 5. Manufacturers:
 - a. Mason "30"
 - b. Kinetics "SRH"
 - c. VMC/Amber-Booth "BSRA"
 - d. Aeroflex "RSH"
 - e. Vibration Eliminator Co. "SNC"
 - f. Vibro Acoustics "SH/SHC"
- C. Type H3:
 - 1. Vibration hangers shall have a steel spring in a neoprene cup with a grommet to prevent short circuiting of the hanger rod.
 - 2. The cup shall have a steel washer to distribute load on the neoprene and prevent its extrusion.
 - 3. Spring diameters and hanger box lower hole sizes shall be large enough to permit the hanger rod to swing through a 30° arc before contacting the grommet and short circuiting the spring.
 - 4. Provide end connections for hanging ductwork or piping.
 - 5. Hangers shall be capable of holding the load at a fixed elevation during installation. They shall have a secondary adjustment to transfer the load to the spring and maintain the same position.
 - 6. Deflection shall be indicated by a pointer and scale.
 - 7. Manufacturer:
 - a. Mason "30N"
 - b. Kinetics "SFH"
 - c. VMC/Amber-Booth "BSW"
 - d. Vibration Eliminator Co. "SNRC"
 - e. Vibro Acoustics "SHR"

2.04 BASES

- A. Type B1:
 - 1. Rectangular structural steel bases.
 - 2. All perimeter members shall be beams or channels with minimum depth of 10% of the longest base dimension or 14" maximum if rigidity is acceptable to the equipment manufacturer.
 - 3. Use height saving brackets, unless noted otherwise.

- 4. Manufacturers:
 - a. Mason "WF"
 - b. Kinetics "SBB"
 - c. Aeroflex
 - d. Vibration Eliminator Co. "AF"
- B. Type B2:
 - 1. Steel members welded to height-saving brackets to cradle machines having legs or bases that do not require complete supplementary bases.
 - 2. Members shall be sufficiently rigid to prevent strains in the equipment.
 - 3. Manufacturers:
 - a. Mason "ICS"
 - b. Kinetics "SFB"
 - c. Aeroflex

2.05 FLEXIBLE CONNECTORS (NOISE AND VIBRATION ELIMINATORS)

- A. Type FC1:
 - 1. Spherical flexible connectors with multiple plies of nylon tire cord fabric and either EPDM or molded and cured neoprene. Outdoor units shall be EPDM.
 - 2. Steel aircraft cables or threaded steel rods shall be used to prevent excess elongation.
 - 3. All straight through connections shall be made with twin-spheres properly pre-extended as recommended by the manufacturer.
 - 4. Connectors up to 2" size may have threaded ends.
 - 5. Connectors 2-1/2" and over shall have floating steel flanges recessed to lock raised face neoprene flanges.
 - 6. All connectors shall be rated for a minimum working pressure of 150 psi at 200°F.
 - 7. Manufacturer:
 - a. Metraflex "Double Cable-Sphere"
 - b. Minnesota Flex Corp.
 - c. Mercer "200 Series"
 - d. Twin City Hose "MS2".
- B. Type FC2:
 - 1. Stainless steel flexible connectors with corrugated stainless steel hose body and stainless steel braided casing.
 - 2. Rated for minimum working pressures of 150 psi at 70°F and 100 psi at 800°F.
 - 3. Sizes 2" and under shall have steel threaded connections.
 - 4. Sizes 2-1/2" and over shall have 150 lb. steel flanges.
 - 5. Suitable for 1/2" permanent misalignment.
 - 6. Manufacturers:
 - a. Mason or Mercer "BSS-GU"
 - b. Metraflex "ML"
 - c. Twin City Hose "TCHS"
 - d. American "BOA B4-1"

- e. Flexible Metal Hose Company "FM-21"
- f. or Wheatley.

PART 3 - EXECUTION

3.01 GENERAL INSTALLATION

- A. Install all products per manufacturer's recommendations.
- B. Provide vibration isolation as indicated on the drawings and as described herein.
- C. Clean the surface below all mountings that are not bolted down and apply adhesive cement equal to Mason Type WG between mounting and floor. If movement occurs, bolt mountings down. Isolate bolts from baseplates with neoprene washers and bushings.
- D. All static deflections listed in the drawings and specifications are the minimum acceptable actual deflection of the isolator under the weight of the installed equipment not the maximum rated deflection of the isolator.
- E. Support equipment to be mounted on structural steel frames with isolators under the frames or under brackets welded to the frames. Where frames are not needed, fasten isolators directly to the equipment.
- F. Where a specific quantity of hangers is noted in these specifications, it shall mean hanger pairs for support points that require multiple hangers, such as rectangular ducts or pipes supported on a strut rack.

3.02 PIPE ISOLATION

- A. The first three hangers from vibration-isolated equipment shall be type H1.
- B. Where piping is floor-supported, use M2 instead of H1 and M3 instead of H2.
- C. Install flexible connectors in all piping connected to vibration producing equipment. This includes all fans, base-mounted pumps, compressors, etc. Absence of flexible connectors on piping diagrams <u>does not</u> imply that they are not required.
- D. Use Type FC1 where pressures are lower than 150 psi, temperatures are below 220°F, and the fluid handled is compatible with neoprene and EPDM.
- E. Use Type FC2 for all other services. FC2 shall be installed parallel with equipment shafts.
- F. Provide sufficient piping flexibility for vibrating refrigerant equipment, or furnish flexible connectors with appropriate temperature and pressure ratings.
- G. Vibration isolators shall not cause any change in position of piping that will result in stresses in connections or misalignment of shafts or bearings. Equipment and piping shall be maintained in a rigid position during installation. Do not transfer load to the isolators until the installation is complete and under full operational load. Hanger H3 and Mounting M4 may be used instead of other products for this purpose.
- H. Support piping to prevent extension of flexible connectors.

3.03 VIBRATION ISOLATION OF DUCTWORK

- A. The first three hangers on all fan systems shall be Type H1 with at least 0.20" minimum static deflection.
- B. Provide flexible duct connections as described in Section 23 3300 at all fan inlets and outlets and on the mechanical room side of all locations where ducts penetrate mechanical room walls.

VIBRATION ISOLATION SUBMITTAL FORM

COLUMN 1	2	3	4	5	6	7	8	9	10	11	12
			PROPOSED ISOLATOR						CALCULATIONS		
ITEM SERVED	MIN DEFL (")	TAG	MODEL	MAX LOAD (#)	DEFL @ MAX LOAD (")	DEFL TO SOLID (")	FREE HT (")	Kx/Ky	LOAD (#)	DEFL (")	DEFL RATIO

COLUMN NOTES: Note numbers correspond to the column numbers above.

1. Item served should match designation on the design drawings.

2. List the deflection scheduled or specified in the design

documents.

3. List the designation for this isolator. This is most useful when one item has multiple different isolators to support its weight.

4. List the manufacturer's complete model designation for the isolator.

5. List the manufacturer's maximum rated load for the isolator.

6. List the isolator deflection at the maximum rated load in column 5.

7. For spring isolators list the deflection when the springs are solid. This is not normally the same entry as in column 6.

8. List the height of the isolator when unloaded. Shop drawings must show where this is measured.

9. List the rated horizontal to vertical stiffness ratio. This must be between 0.8 and 2.0.

10. List the calculated equipment load on each isolator. For items with unequal weight distribution, calculate each isolator separately.

11. List the calculated deflection under the calculated load. For springs this will be column 10*(column 6 / column 5).

12. List the answer from dividing column 7 by column 11. This must be at least 1.5. If not, select an isolator with more nominal deflection. GENERAL NOTES:

1. When submitting hangers or supports for a weight range, fill in two rows - one for the maximum and one for the minimum weight.

SECTION 23 0553 HVAC IDENTIFICATION

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. Identification of products installed under Division 23.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

- A. 3M
- B. Bunting
- C. Calpico
- D. Craftmark
- E. Emedco
- F. Kolbi Industries
- G. Seton
- H. W. H. Brady
- I. Marking Services.

2.02 MATERIALS

- A. General:
 - 1. Plastic Nameplates: Laminated three-layer phenolic with engraved black, 1/4" minimum letters on light contrasting background.
 - 2. Plastic Tags: Minimum 1-1/2" square or round laminated three-layer phenolic with engraved, 1/4" minimum black letters on light contrasting background.
- B. Pipe Markers:
 - 1. All pipe markers shall conform to ANSI A13.1. Marker lengths and letter sizes shall be at least the following:

OD of Pipe or Insulation	Marker Length	Size of Letters
Up to and including 1-1/4"	8"	1/2"
1-1/2" to 2"	8"	3/4"
2-1/2" to 6"	12"	1-1/4"
8" to 10"	24"	2-1/2"
Over 10"	32"	3-1/2"

Plastic tags may be used for outside diameters under 3/4"

- 2. Plastic Pipe Markers: Semi-rigid plastic, preformed to fit around pipe or pipe covering; indicating flow direction and fluid conveyed.
- 3. Vinyl Pipe Markers: Colored vinyl with permanent pressure sensitive adhesive backing.
- 4. Stencil Painted Pipe Markers: Use industrial enamel spray paint per ANSI Standard A13.1. Indicate fluid conveyed and flow direction.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Install all products per manufacturer's recommendations.
- B. Degrease and clean surfaces to receive adhesive for identification materials.
- C. Valves:
 - 1. All valves (except shutoff valves at equipment) shall have numbered tags.
 - 2. Provide or replace numbered tags on all existing valves that are connected to new systems or that have been revised.
 - 3. Provide all existing valves used to extend utilities to this project with numbered tags. Review tag numbering sequence with the Owner prior to ordering tags.
 - 4. Secure tags with heavy duty key chain and brass "S" link or with mechanically fastened plastic straps.
 - 5. Attach to handwheel or around valve stem.
 - 6. Number all tags and show the service of the pipe.
 - 7. Provide two sets of laminated 8-1/2" x 11" (letter size) copies of a valve directory listing all valves, with respective tag numbers, uses, and locations. The directory shall be reviewed by the Owner and Architect/Engineer prior to laminating final copies. Laminated copies shall have brass eyelet in at least one corner for easy hanging.
- D. Pipe Markers:
 - 1. Adhesive Backed Markers: Use Brady Style 1, 2, or 3 on pipes 3" diameter and larger. Use Brady Style 4, 6, or 8 on pipes under 3" diameter. Similar styles by other listed manufacturers are acceptable. Secure all markers at both ends with a wrap of pressure sensitive tape completely around the pipe.
 - 2. Snap-on Markers: Use Seton "Setmark" on pipes up to 5-7/8" OD. Use Seton "Setmark" with nylon or Velcro ties for pipes 6" OD and over. Similar styles by other listed manufacturers are acceptable.
 - 3. Stencil Painted Pipe Markers:
 - a. Remove rust, grease, dirt, and all foreign substances from the pipe surface.
 - b. Apply primer on non-insulated pipes before painting.
 - c. Use background and letter colors as scheduled later in this section.
 - 4. Apply markers and arrows in the following locations where clearly visible:
 - a. At each valve.
 - b. On both sides of walls that pipes penetrate.
 - c. At least every 20 feet along all pipes.
 - d. On each riser and each leg of each "T" joint.
 - e. At least once in every room and each story traversed.
- E. Equipment:
 - 1. All equipment not easily identifiable such as controls, relays, gauges, etc.; and all equipment in an area remote from its function such as air handling units, exhaust fans, filters, reheat coils, dampers, etc.; shall have nameplates or plastic tags listing name, function, and drawing symbol. Do not label exposed equipment in public areas.
 - 2. Fasten nameplates or plastic tags with stainless steel self-tapping screws or permanently bonding cement.
 - 3. Mechanical equipment that is not covered by the U.S. National Appliance Energy Conservation Act (NAECA) of 1987 shall carry a permanent label installed by the manufacturer stating that the equipment complies with the requirements of ASHRAE 90.1.

F. Miscellaneous:

- 1. Attach self-adhesive vinyl labels at all duct access doors used to reset fusible links or actuators on fire, fire/smoke, or smoke dampers. Lettering shall be a minimum of 1/2" high. Labels shall indicate damper type.
- 2. Provide engraved plastic tags at all hydronic or steam system make-up water meters.

3.02 SCHEDULE

- A. Pipes to be marked shall be labeled with text as follows, regardless of which method or material is used:
 - 1. HEATING WATER SUPPLY: White lettering; green background
 - 2. HEATING WATER RETURN: White lettering; green background
 - 3. CONDENSATE DRAIN: White lettering; green background
 - 4. REFRIGERANT LIQUID: White lettering; purple background
 - 5. REFRIGERANT SUCTION: White lettering; purple background
 - 6. REFRIGERANT HOT GAS: White lettering; purple background

SECTION 23 0593

TESTING, ADJUSTING, AND BALANCING

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Testing, adjusting, and balancing of air systems.
- B. Testing, adjusting, and balancing of heating systems.
- C. Testing, adjusting, and balancing of cooling systems.
- D. Measurement of final operating condition of HVAC systems.

1.02 QUALITY ASSURANCE

A. Work shall be performed in accordance with the requirements of the references listed at the start of this section.

1.03 REFERENCES

- A. AABC National Standards for Total System Balance, Seventh Edition.
- B. ADC Test Code for Grilles, Registers, and Diffusers.
- C. AMCA Publication 203-90; Field Performance Measurement of Fan Systems.
- D. ASHRAE 2019 HVAC Applications Handbook; Chapter 39, Testing, Adjusting and Balancing.
- E. ASHRAE/ANSI Standard 111-2008; Practices for Measurement, Testing, Adjusting and Balancing of Building HVAC&R Systems.
- F. NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems, Ninth Edition, 2019.
- G. SMACNA HVAC Systems; Testing, Adjusting and Balancing (latest edition).
- H. TABB International Standards for Environmental Systems Balance.

1.04 SUBMITTALS

- A. Submit copies of report forms, balancing procedures, and the name and qualifications of testing and balancing agency for approval within 30 days after award of Contract.
- B. Electronic Copies:
 - 1. Submit a certified copy of test reports to the Architect/Engineer for approval. Electronic copies shall be in PDF format only. Scanned copies, in PDF format, of paper originals are acceptable. Copies that are not legible will be returned to the Contractor for resubmittal. Do not set any permission restrictions on files; protected, locked, or secured documents will be rejected.
 - 2. Electronic file size shall be limited to a maximum of 10MB. Larger files shall be divided into files that are clearly labeled as "1 of 2", "2 of 2", etc.
 - 3. All text shall be searchable.
 - 4. Bookmarks shall be used. All bookmark titles shall be an active link to the index page and index tabs.

1.05 REPORT FORMS

- A. Submit reports on AABC, SMACNA or NEBB forms. Use custom forms approved by the Architect/Engineer when needed to supply specified information.
- B. Include in the final report a schematic drawing showing each system component, including balancing devices, for each system. Each drawing shall be included with the test reports required for that system. The schematic drawings shall identify all testing points and cross-reference these points to the report forms and procedures.
- C. Refer to PART 4 for required reports.

1.06 WARRANTY/GUARANTEE

- A. The TAB Contractor shall include an extended warranty of 90 days after owner receipt of a completed balancing report, during which time the Owner may request a recheck of terminals, or resetting of any outlet, coil, or device listed in the test report. This warranty shall provide a minimum of 8 manhours of onsite service time. If it is determined that the new test results are not within the design criteria, the balancer shall rebalance the system according to design criteria.
- B. Warranty/Guarantee must meet one of the following programs: TABB International Quality Assurance Program, AABC National Project Performance Guarantee, NEBB's Conformance Certification.

1.07 SCHEDULING

- A. Coordinate schedule with other trades. Provide a minimum of seven days' notice to all trades and the Architect/Engineer prior to performing each test.
- B. Project will be constructed in phases. Provide balancing report after each phase is complete.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.01 GENERAL REQUIREMENTS

- A. All procedures must conform to a published standard listed in the References article of this section. All equipment shall be adjusted in accordance with the manufacturer's recommendations. Any system not listed in this specification but installed under the contract documents shall be balanced using a procedure from a published standard listed in the References article.
- B. The Balancing Contractor shall incorporate all pertinent documented construction changes (e.g. submittals/shop drawings, change orders, RFIs, ASIs, etc.) and include in the balancing report.
- C. Recorded data shall represent actual measured or observed conditions.
- D. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary to allow adequate performance of procedures. After testing and balancing is complete, close probe holes and patch insulation with new materials as specified. Restore vapor barrier and finish as specified.
- E. Permanently mark setting of valves, dampers, and other adjustment devices allowing for settings to be restored. Set and lock memory stops.
- F. Leave systems in proper working order, replacing belt guards, closing access doors, closing doors to electrical switch boxes, plugging test holes, and restoring thermostats to specified settings.
- G. Installations with systems consisting of multiple components shall be balanced with all system components operating.

3.02 EXAMINATION

- A. Before beginning work, verify that systems are complete and operable. Ensure the following:
 - 1. General Equipment Requirements:
 - a. Equipment is safe to operate and in normal condition.
 - b. Equipment with moving parts is properly lubricated.
 - c. Temperature control systems are complete and operable.
 - d. Proper thermal overload protection is in place for electrical equipment.
 - e. Direction of rotation of all fans and pumps is correct.
 - f. Access doors are closed and end caps are in place.
 - 2. Duct System Requirements:
 - a. All filters are clean and in place. If required, install temporary media.
 - b. Duct systems are clean and free of debris.
 - c. Fire/smoke and manual volume dampers are in place, functional and open.

- d. Air outlets are installed and connected.
- e. Duct system leakage has been minimized.
- 3. Pipe System Requirements:
 - a. Coil fins have been cleaned and combed.
 - b. Hydronic systems have been cleaned, filled, and vented.
 - c. Strainer screens are clean and in place.
 - d. Shutoff, throttling and balancing valves are open.
- B. Report any defects or deficiencies to Architect/Engineer.
- C. Promptly report items that are abnormal or prevent proper balancing.
- D. If, for design reasons, system cannot be properly balanced, report as soon as observed.
- E. Beginning of work means acceptance of existing conditions.

3.03 PREPARATION

- A. Provide instruments required for testing, adjusting, and balancing operations. Make instruments available to the Architect/Engineer for spot checks during testing.
- B. Instruments shall be calibrated within six months of testing performed for project, or more recently if recommended by the instrument manufacturer.

3.04 INSTALLATION TOLERANCES

- A. ± 10% of scheduled values:
 - 1. Adjust air inlets and outlets to \pm 10% of scheduled values.
 - 2. Adjust piping systems to ±10% of design values.
- B. + 5% of scheduled values
 - 1. Adjust outdoor air intakes to within + 5% of scheduled values.
- C. Adjust supply, return, and exhaust air-handling systems to +10% / -5% of scheduled values.

3.05 ADJUSTING

- A. After adjustment, take measurements to verify balance has not been disrupted or that disruption has been rectified.
- B. Once balancing of systems is complete, at least one damper or valve must be 100% open.
- C. After testing, adjusting and balancing are complete, operate each system and randomly check measurements to verify system is operating as reported in the report. Document any discrepancies.
- D. Contractor responsible for each motor shall also be responsible for replacement sheaves. Coordinate with contractor.
- E. Contractor responsible for pump shall trim impeller to final duty point as instructed by this contractor on all pumps not driven by a VFD. Coordinate with contractor.

3.06 SUBMISSION OF REPORTS

A. Fill in test results on appropriate forms.

PART 4 - SYSTEMS TO BE TESTED, ADJUSTED AND BALANCED

4.01 VERIFICATION OF EXISTING SYSTEMS.

- A. Perform a pre-balance of systems serving the area of construction prior to the start of any other work. Do not make adjustments to the systems. If the systems are not operating at maximum capacity, temporarily drive system to maximum and take readings for the system. Return the system to its original state when measurements are complete.
 - 1. Air Handling Unit and Return Fan:
 - a. General Requirements:
 - 1) Existing Equipment Tag (if available).
 - 2) Location.
 - 3) Manufacturer, model, arrangement, class, discharge.
 - 4) Fan RPM.
 - b. Flow Rate:
 - 1) Supply flow rate (cfm)
 - 2) Return flow rate (cfm)
 - 3) Outside flow rate (cfm)
 - 4) Exhaust flow rate (cfm)
 - c. Pressure Drop and Pressure:
 - 1) Filter pressure drop.
 - 2) Total static pressure. (Indicate if across fan or external to unit).
 - 3) Inlet pressure.
 - 4) Discharge pressure.

4.02 GENERAL REQUIREMENTS

- A. Title Page:
 - 1. Project name.
 - 2. Project location.
 - 3. Project Architect.
 - 4. Project Engineer (IMEG Corp.).
 - 5. Project General Contractor.
 - 6. TAB Company name, address, phone number.
 - 7. TAB Supervisor's name and certification number.
 - 8. TAB Supervisor's signature and date.
 - 9. Report date.
- B. Report Index
- C. General Information:
 - 1. Test conditions.
 - 2. Nomenclature used throughout report.
 - 3. Notable system characteristics/discrepancies from design.
 - 4. Test standards followed.
 - 5. Any deficiencies noted.
 - 6. Quality assurance statement.

- D. Instrument List:
 - 1. Instrument.
 - 2. Manufacturer, model, and serial number.
 - 3. Range.
 - 4. Calibration date.

4.03 AIR SYSTEMS

- A. Air Moving Equipment:
 - 1. General Requirements:
 - a. Drawing symbol.
 - b. Location.
 - c. Manufacturer, model, arrangement, class, discharge.
 - d. Fan RPM.
 - e. Multiple RPM fan curve with operating point marked. (Obtain from equipment supplier).
 - f. Final frequency of motor at maximum flow rate (on fans driven by VFD).
 - 2. Flow Rate:
 - a. Supply flow rate (cfm): specified and actual.
 - b. Return flow rate (cfm): specified and actual.
 - c. Outside flow rate (cfm): specified and actual.
 - d. Exhaust flow rate (cfm): specified and actual.
 - 3. Pressure Drop and Pressure:
 - a. Filter pressure drop: specified and actual.
 - b. Total static pressure: specified and actual. (Indicate if across fan or external to unit).
 - c. Inlet pressure.
 - d. Discharge pressure.
 - B. Fan Data:
 - 1. Drawing symbol.
 - 2. Location.
 - 3. Manufacturer and model.
 - 4. Flow rate (cfm): specified and actual.
 - 5. Total static pressure: specified and actual. (Indicate measurement locations).
 - 6. Inlet pressure.
 - 7. Discharge pressure.
 - 8. Fan RPM.
 - C. Electric Motors:
 - 1. Drawing symbol of equipment served.
 - 2. Manufacturer, Model, Frame.
 - 3. Nameplate: HP, phase, service factor, RPM, operating amps, efficiency.
 - 4. Measured: Amps in each phase.

- D. Duct Traverse:
 - 1. System zone/branch/location.
 - 2. Duct size.
 - 3. Free area.
 - 4. Velocity: specified and actual.
 - 5. Flow rate (cfm): specified and actual.
 - 6. Duct static pressure.
 - 7. Air temperature.
 - 8. Air correction factor.
- E. Air Flow Measuring Station:
 - 1. Drawing symbol.
 - 2. Service.
 - 3. Location.
 - 4. Manufacturer and model.
 - 5. Size.
 - 6. Flow rate (cfm): specified and actual.
 - 7. Pressure drop: specified and actual.

4.04 HEATING SYSTEMS

- A. Pump Data (Coil Pump):
 - 1. Existing drawing symbol or equipment TAG
 - 2. Service.
 - 3. Manufacturer, size, and model.
 - 4. Impeller size: specified, actual, and final (if trimmed).
 - 5. Flow Rate (gpm): specified and actual.
 - 6. Pump Head: specified, operating and shutoff.
 - 7. Suction Pressure: Operating and shutoff.
 - 8. Discharge Pressure: Operating and shutoff.
- B. Heating Coils:
 - 1. General Requirements:
 - a. Drawing symbol.
 - b. Service.
 - c. Location.
 - d. Manufacturer and model.
 - e. Size.
 - 2. Flow Rate:
 - a. Flow rate (cfm): specified and actual.
 - b. Water flow rate: specified and actual.
 - 3. Temperature:
 - a. Entering air temperature: specified and actual.0
 - b. Leaving air temperature: specified and actual.

- c. Entering water temperature: specified and actual.
- d. Leaving water temperature: specified and actual.
- 4. Pressure Drop and Pressure:
 - a. Air pressure drop: specified and actual.
 - b. Water pressure drop: specified and actual.
- 5. Energy:
 - a. Air Btuh (cfm x temp rise x 1.09).
 - b. Water Btuh (gpm x temp drop x 500). Repeat tests if not within 10% of air Btuh.

4.05 COOLING SYSTEMS

- A. Cooling Coils:
 - 1. General Requirements:
 - a. Drawing symbol.
 - b. Service.
 - c. Location.
 - d. Size.
 - e. Manufacturer and model.
 - 2. Temperature:
 - a. Entering air DB temperature: specified and actual.
 - b. Entering air WB temperature: specified and actual.
 - c. Leaving air DB temperature: specified and actual.
 - d. Leaving air WB temperature: specified and actual.
 - 3. Flow Rate:
 - a. Flow rate (cfm): specified and actual.
 - 4. Pressure Drop and Pressure:
 - a. Air pressure drop: specified and actual.
 - 5. Energy:
 - a. Air Btuh (cfm x enthalpy change x 4.5).

SECTION 23 0713 DUCTWORK INSULATION

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Ductwork Insulation.
- B. Insulation Jackets.

1.02 QUALITY ASSURANCE

A. Materials:

- 1. Listed and labeled for flame spread/smoke developed rating of no more than 25/50 when tested per ASTM E84 or UL 723 as required by code.
- 2. Fungal Resistance: No growth when tested in accordance with ASTM G21 (antifungal test).
- 3. Rated velocity on coated air side for air erosion in accordance with UL 181 at 5,000 fpm minimum.
- Adhesives: UL listed, meeting NFPA 90A/90B requirements.

PART 2 - PRODUCTS

Β.

2.01 MATERIALS

- A. Type A: Flexible Fiberglass Outside Wrap; ANSI/ASTM C553; commercial grade; 0.28 / 0.26 (Out-Of-Package/Installed-Compressed 25%) maximum 'K' value at 75°F; foil scrim Kraft facing, 1.0 lb./cu. ft. density. Submit both "Out of Package" and "Installed-Compressed 25%" K and R-values.
- B. Type B: Semi-rigid Fiberglass Board Wrap Outside Application; ANSI/ASTM C612, Class 1; 0.25 maximum 'K' value at 75°F; foil scrim Kraft facing, 3 lb./cu. ft. density.

2.02 JACKETS

A. Vapor Barrier Jackets: Kraft reinforced foil scrim vapor barrier with self-sealing adhesive joints. Beach puncture resistance ratio of at least 25 units. Tensile strength: 35 psi minimum. Single, self-seal acrylic adhesive on longitudinal jacket laps and butt strips.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Install materials in accordance with manufacturer's instructions, codes, and industry standards.
- B. Install materials after ductwork has been tested.
- C. Clean surfaces for adhesives.
- D. Provide insulation with vapor barrier when air conveyed may be below ambient temperature.
- E. Exterior Duct Wrap Flexible, Type A:
 - 1. Apply with edges tightly butted.
 - 2. Cut slightly longer than perimeter of duct to insure full thickness at corners. Do not wrap excessively tight.
 - 3. Seal joints with adhesive backed tape.
 - 4. Apply so insulation conforms uniformly and firmly to duct.
 - 5. Seal all penetrations of the vapor barrier by strap hangers or slip cable hangers with adhesive backed tape.
 - 6. Tape all joints with Royal Tapes #RT 350 (216-439-7229), Venture Tape 1525CW, or Compac Type FSK. No substitutions will be accepted without written permission from the Architect/Engineer.

- 7. Press tape tightly to the duct covering with a squeegee for a tight continuous seal. Fish mouths and loose tape edges are not acceptable.
- 8. Staples may be used, but must be covered with tape.
- 9. Vapor barrier must be continuous.
- 10. Mechanically fasten on 12" centers at bottom of ducts over 24" wide and on all sides of vertical ducts.
- F. Semi Rigid Fiberglass Board Wrap Type B (Indoor Use):
 - 1. Impale on pins welded to the duct and secured with speed clips. Clip pins off close to speed clips.
 - 2. Space pins as needed to hold insulation firmly against duct, but not less than one pin per square foot. Pins must be long enough to avoid compressing the insulation.
 - 3. Seal all joints and speed clips with glass fabric set in adhesive or a 3" wide strip of Royal Tapes #RT 350 (216-439-7229), Venture Tape 1525CW, or Compac Type FSK facing tape.
 - 4. For small areas, secure insulation with adhesive over the entire surface of the duct. Use adhesive in addition to pins as needed to prevent sagging on horizontal surfaces.
- G. Continue insulation with vapor barrier through penetrations unless code prohibits.
- H. Provide 2" wide, 24" high, 26 gauge, galvanized sheet metal corner protection angles for all externally insulated ductwork extending to a floor or curb.

3.02 SCHEDULE

A. Refer to drawings for scheduling of insulation.

SECTION 23 0719 HVAC PIPING INSULATION

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Piping Insulation.
- B. Insulation Jackets.

1.02 QUALITY ASSURANCE

- A. Materials: Listed and labeled for flame spread/smoke developed rating of no more than 25/50 when tested per ASTM E84 or UL 723 as required by code. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers with appropriate markings of applicable testing agency.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- D. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

PART 2 - PRODUCTS

2.01 INSULATION

- A. Type A: Glass fiber; ANSI/ASTM C547; 0.24 maximum 'K' value at 75°F; non-combustible. All-purpose polymer or polypropylene service jacket, listed and labeled at no more than 25/50 when tested per ASTM E84 or UL 723 as required by code.
- B. Type B: Flexible elastomeric foam insulation; closed-cell, sponge or expanded rubber (polyethylene type is not permitted); ANSI/ASTM C534, Grade 1 Type I for tubular materials; flexible plastic; 0.25 maximum 'K' value at 75°F, listed and labeled at no more than 25/50 when tested per ASTM E84 or UL 723 as required by code. Maximum 1" thick per layer where multiple layers are specified.
- C. Type C: Molded rigid cellular glass; ANSI/ASTM C-552; 0.29 maximum 'K' value at 75°F; density 7.3lb/ft; minimum compressive strength 90 psi parallel to rise; moisture resistant, non-combustible; suitable for 100°F to +900°F. For below grade installations use asphaltic mastic paper vapor barrier jacket. Use self-seal all-purpose polymer or polypropylene service jacket for above grade installations.
- D. Type D: Hydrous Calcium Silicate; ASTM C533; rigid molded pipe insulation; asbestos free; 0.40 'K' value at 300°F; 1200°F maximum service temperature; 16 gauge stainless steel tie wires on maximum 12" centers.

2.02 VAPOR BARRIER JACKETS

A. All-purpose polymer or polypropylene service jacket vapor barrier with self-sealing adhesive joints. Beach puncture resistance ratio of at least 50 units. Tensile strength: 35 psi minimum. Single, self-seal acrylic adhesive on longitudinal jacket laps and butt strips.

2.03 JACKET COVERINGS

A. Plastic Jackets and Fitting Covers: High impact, glossy white, 0.030" thick, self-extinguishing plastic. Suitable for use indoors or outdoors with ultraviolet inhibitors. Suitable for -40°F to 150°F. Listed and labeled at no more than 25/50 when tested per ASTM E84 or UL 723 as required by code.

PART 3 - EXECUTION

3.01 PREPARATION

- A. Install insulation after piping has been tested. Pipe shall be clean, dry and free of rust before applying insulation.
- B. Patch and repair torn insulation. Paint to match adjacent insulation surface.

3.02 INSTALLATION

- A. General Installation Requirements:
 - 1. Install materials per manufacturer's instructions, building codes and industry standards.
 - 2. Continue insulation with vapor barrier through penetrations. This applies to all insulated piping. Maintain fire rating of all penetrations.
 - 3. All piping and insulation that does not meet 25/50 that is in an air plenum shall have written approval from the Authority Having Jurisdiction and the local fire department for authorization and materials approval. If approval has been allowed, the non-rated material shall be wrapped with a product that has been listed and labeled having a flame spread index of not more than 25 and a smoke-developed index of not more than 50 when tested as a composite in accordance with ASTM E84 or UL 723.
- B. Insulated Piping Operating Below 60°F:
 - 1. Insulate fittings, valves, unions, flanges, flexible connections, flexible hoses, and expansion joints. Seal all penetrations of vapor barrier.
 - 2. On piping operating below 60°F in locations that are not mechanically cooled (e.g., penthouses, mechanical rooms, tunnels, chases at exterior walls, etc.), Type B insulation shall be used.
 - 3. All balance valves and strainers with fluid operating below 60°F shall be insulated with a removable plug wrapped with vapor barrier tape to allow access for reading and adjusting of the balancing valve and cleaning and servicing of the balancing valve.
- C. Insulated Piping Operating Between 60°F and 140°F:
 - 1. Do not insulate flanges and unions, but bevel and seal ends of insulation at such locations. Insulate all fittings, valves and strainers.
- D. Insulated Piping Operating Above 140°F:
 - 1. Insulate fittings, valves, flanges, float & thermostatic steam traps, and strainers. On gate valves, the insulation shall be extended to cover the entire valve bonnet, leaving only the portion of the stem that is above the bonnet and valve operator exposed.
 - 2. All balance valves with fluid operating above 140°F shall be insulated and an opening shall be left in the insulation to allow for reading and adjusting the valve.
 - 3. The use of removable insulation jackets is acceptable for insulating large and non-cylindrical shaped piping components (e.g., check valves, pressure regulating valves, calibrated balance valves, gate valve bonnets, F&T traps, strainers, line sets, and the like).
- E. Exposed Piping:
 - 1. Locate and cover seams in least visible locations.
 - 2. Where exposed insulated piping extends above the floor, provide a sheet metal guard around the insulation extending 12" above the floor. Guard shall be 0.016" cylindrical smooth or stucco aluminum and shall fit tightly to the insulation.

3.03 SUPPORT PROTECTION

- A. Provide a shield on all insulated piping at each support between the insulation jacket and the support.
- B. On all insulated piping greater than 1-1/2", provide shield with insulation insert of same thickness and contour as adjoining insulation at each support, between the pipe and insulation jacket, to prevent insulation from sagging and crushing. Inserts shall be as follows:
 - 1. The insert shall be suitable for planned temperatures, be suitable for use with specific pipe material, and shall be a minimum 180° cylindrical segment the same length as metal shields. Inserts shall be:
 - Cellular glass (Type C) (for all temperature ranges) with a minimum compressive strength of 90 psi is acceptable for pipe sizes 14" and below. Molded hydrous calcium silicate (Type D) (only use for pipes with operating temperatures above 90°F, with a minimum compressive strength of 100 psi is acceptable for pipe sizes 14" and below.

- b. As an alternative to separate pipe insulation insert and saddle, properly sized manufactured integral rigid insulation insert and shield assemblies may be used.
 - 1) Products:
 - a) Buckaroo CoolDry
 - b) Cooper/B-Line Fig. B3380 through B3384
 - c) Pipe Shields A1000, A2000
- c. Insulation Couplings:
 - Molded thermoplastic slip coupling, -65°F to 275°F, sizes up to 4-1/8" OD, and receive insulation thickness up to 1". Suitable for use indoors or outdoors with UV stabilizers. Vertical insulation riser clamps shall have a 1,000lb vertical load rating. On cold pipes operating below 60°F, cover joint and coupling with vapor barrier mastic to ensure continuous vapor barrier.
 - 2) PET thermoplastic foam load bearing core with elastomeric foam ends and lap-seal jacket.
 - 3) Horizontal Strut Mounted Insulated Pipe Manufacturers:
 - a) Klo-Shure or equal
 - b) Armafix Ecolight
 - 4) Vertical Manufacturers:
 - a) Manufacturers: Klo-Shure Titan or equal
- d. Rectangular blocks, plugs, or wood material are not acceptable.
- e. Temporary wood blocking may be used by the Piping Contractor for proper height; however, these must be removed and replaced with proper inserts by the Insulation Contractor. Refer to Supports and Anchors specification section for additional information.
- C. Neatly finish insulation at supports, protrusions, and interruptions.
- D. Install metal shields between all hangers or supports and the pipe insulation. Shields shall be galvanized sheet metal, half-round with flared edges. Adhere shields to insulation. On cold piping, seal the shields vapor-tight to the insulation as required to maintain the vapor barrier, or add separate vapor barrier jacket.
- E. Shields shall be at least the following lengths and gauges:

Pipe Size	Shield Size
1/2" to 3-1/2"	12" long x 18 gauge
4"	12" long x 16 gauge
5" to 6"	18" long x 16 gauge

F. Elastomeric foam insulation shields/saddle; molded thermoplastic rigid pipe saddle sized for insulation outside diameter. Length as indicated above.

3.04 INSULATION

- A. Type A Insulation:
 - 1. All Service Jackets: Seal all longitudinal joints with self-seal laps using a single pressure sensitive adhesive system. Do not staple.
 - 2. Insulation without self-seal lap may be used if installed with Benjamin Foster 85-20 or equivalent Chicago Mastic, 3M or Childers lap adhesive.
 - 3. Apply insulation with laps on top of pipe.

- 4. Fittings, Valve Bodies and Flanges: For 4" and smaller pipes, insulate with 1 lb. density insulation wrapped under compression to a thickness equal to the adjacent pipe insulation. For pipes over 4", use mitered segments of pipe insulation. Finish with preformed plastic fitting covers. Secure fitting covers with pressure sensitive tape at each end. Overlap tape at least 2" on itself. For pipes operating below 60°F, seal fitting covers with vapor retarder mastic in addition to tape.
- B. Type B Insulation:
 - 1. Install per manufacturer's instructions or ASTM C1710.
 - 2. Elastomeric Cellular Foam: Where possible, slip insulation over the open end of pipe without slitting. Seal all butt ends, longitudinal seams, and fittings with adhesive. At elbows and tees, use mitered connections. Do not compress or crush insulation at cemented joints. Joints shall be sealed completely and not pucker or wrinkle. Exterior installations shall contain factory applied polymeric, moisture, and UV resistant covering with ends sealed with adhesive and similar cover; or Contractor shall paint the outside of outdoor insulation with two coats of latex enamel paint recommended by the manufacturer.
 - 3. Insulation Installation on Straight Pipes and Tubes:
 - a. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
 - b. Insulation must be installed in compression to allow for expansion and contraction. Insulation shall be pushed onto the pipe, never pulled. Stretching of insulation may result in open seams and joints.
 - 4. Insulation Installation on Valves and Pipe Specialties:
 - a. Install preformed sections of same material as straight segments of pipe insulation when available.
 - b. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
 - c. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.

3.05 JACKET COVER INSTALLATION

- A. Plastic Covering:
 - 1. Provide vapor barrier as specified for insulation type. Cover with plastic jacket covering. Position seams to shed water.
 - 2. Solvent weld all joints with manufacturer recommended cement.
 - 3. Overlap all laps and butt joints 1-1/2" minimum. Repair any loose ends that do not seal securely. Solvent weld all fitting covers in the same manner. Final installation shall be watertight.
 - 4. Use plastic insulation covering on all exposed pipes including, but not limited to:
 - a. All exterior piping.
 - b. All exposed piping in mechanical or equipment rooms below 8'-0" above floor.
 - 5. Elastomeric piping insulation may have two coats of latex paint instead of plastic jacket.

3.06 SCHEDULE

A. Refer to drawings for insulation schedule.

SECTION 23 0801 COMMISSIONING OF HVAC

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Description
- B. Responsibilities
- C. Related Work
- D. Test Equipment

1.02 DESCRIPTION

- A. The purpose of this section is to specify Division 23 responsibilities in the commissioning process.
- B. The systems to be commissioned are the building mechanical systems in IECC 2012 Section C408 applicable to the project.
 - 1. AHU and associated condensing unit

1.03 **RESPONSIBILITIES**

- A. Commissioning requires the participation of the Division 23 Contractor to ensure that all systems are operating in a manner consistent with the Contract Documents. The general commissioning requirements and coordination are detailed in Section 01 9100. Division 23 Contractor shall be familiar with all parts of Section 01 9100 and shall execute all commissioning responsibilities assigned to them in the Contract Documents.
- B. Refer to Section 01 9100 for more information.

1.04 RELATED WORK

- A. Specific commissioning requirements are given in the following sections of these specifications. All the following sections apply to the Work of this section.
 - 1. Section 01 9100 Commissioning

PART 2 - PRODUCTS

2.01 TEST EQUIPMENT

- A. The Contractor shall provide all test equipment necessary to fulfill the testing requirements of this Division. This equipment includes, but is not limited to, the following:
 - 1. Handheld temperature and relative humidity meter.
 - 2. Infrared thermometer gun.
 - 3. Analog differential pressure gauge and associated tubing.
 - 4. Portable computer with access to the building automation system.
- B. All testing equipment shall be of sufficient quality and accuracy to test and/or measure system performance with the tolerances specified in the related specifications. If not otherwise noted, the following minimum requirements apply:
 - 1. Temperature sensors and digital thermometers shall have a certified calibration within the past year to an accuracy of 0.5°F and a resolution of +/- 0.1°F.
 - 2. Pressure sensors shall have an accuracy of +/- 2.0% of the value range being measured (not full range of meter) and have been calibrated within the last year.
 - 3. All equipment shall be calibrated according to the manufacturer's recommended intervals and when dropped or damaged. Calibration tags shall be affixed or certificates readily available.
- C. Refer to Section 01 9100 for additional Division 23 requirements.

PART 3 - EXECUTION

A. Refer to Section 01 9100 for more information.

SECTION 23 0900 CONTROLS

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Complete System of Automatic Controls.
- B. Control Devices, Components, Wiring and Material.
- C. Instructions for Owners.
- D. Remodeling.

1.02 SUBMITTALS

- A. Equipment Coordination:
 - 1. The Controls Contractor shall obtain approved equipment submittals from other contractors to determine equipment wiring connections, to choose appropriate controllers, and to provide programming.
 - 2. Control valve selections shall be based on flow rates shown in approved shop drawings.
 - 3. Coordinate the control interface of all equipment with the equipment manufacturers prior to submittal submission.
- B. Shop Drawings:
 - 1. Submit shop drawings per Section 23 0500. In addition, submit an electronic copy of the shop drawings in Adobe Acrobat (.pdf) format to the Owner for review.
 - 2. Cross-reference all control components and point names in a single table located at the beginning of the submittal with the identical nomenclature used in this section.
 - 3. Submittal shall also include a trunk cable schematic diagram depicting operator workstations, control panel locations and a description of the communication type, media and protocol.
 - 4. System Architecture: Provide riser diagrams of wiring between central control unit and all control panels. This shall include specific protocols associated with each level within the architecture. Identify all interface equipment between CPU and control panels. The architecture shall include interface requirements with other systems including, but not limited to, security systems, lighting control, fire alarm, elevator status, and power monitoring system.
 - 5. Diagrams shall include:
 - a. Wiring diagrams and layouts for each control panel showing all termination numbers.
 - b. Schematic diagrams for all control, communication, and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system.
 - c. Identification of all control components connected to emergency power.
 - d. Schematic diagrams for all field sensors and controllers.
 - e. A schematic diagram of each controlled system. The schematics shall have all control points labeled. The schematics shall graphically show the location of all control elements in the system.
 - f. A schematic wiring diagram for each controlled system. Each schematic shall have all elements labeled. Where a control element is the same as that shown on the control system schematic, label it with the same name. Label all terminals.
 - g. A tabular instrumentation list for each controlled system. The table shall show element name, type of device, manufacturer, model number and product data sheet number.

- h. All installation details and any other details required to demonstrate that the system will function properly.
- i. All interface requirements with other systems.
- 6. The network infrastructure shall conform to the published guidelines for wire type, length, number of nodes per channel, termination, and other relevant wiring and infrastructure criteria as published. The number of nodes per channel shall be no more than 80% of the defined segment (logical or physical) limit in order to provide future system enhancement with minimal infrastructure modifications.
- 7. Sequences: Submit a complete description of the operation of the control system, including sequences of operation. The description shall include and reference a schematic diagram of the controlled system. The wording of the control sequences in the submittal shall match verbatim that included in the construction documents to ensure there are no sequence deviations from that intended by the Architect/Engineer. Clearly highlight any deviations from the specified sequences on the submittals.
- 8. Points List Schedule: Submit a complete points list of all points to be connected to the TCS and FMCS. The points list for each system controller shall include both inputs and outputs (I/O), point number, the controlled device associated with the I/O point, the location of the I/O device, and reference drawings. Where a control point is the same as that shown on the control system schematic, label it with the same name. Points list shall specifically identify alarms, trends, event history, archive, totalization, graphic points, and all mapped points from other systems (security systems, lighting control, fire alarm, etc.). Provide points lists, point naming convention, and factory support information for systems provided and integrated into the FMCS.
- 9. Damper Schedule: Schedule shall include a separate line for each damper and a column for each of the damper attributes:
 - a. Damper Identification Tag.
 - b. Location.
 - c. Damper Type.
 - d. Damper Size.
 - e. Duct Size.
 - f. Arrangement.
 - g. Blade Type.
 - h. Velocity.
 - i. Pressure Drop.
 - j. Fail Position.
 - k. Actuator Identification Tag.
 - I. Actuator Type.
 - m. Mounting.
- 10. Valve Schedule: Valve manufacturer shall size valves and create a valve schedule. Schedule shall include a separate line for each valve and a column for each of the valve attributes:
 - a. Valve Identification Tag.
 - b. Location.
 - c. Valve Type.
 - d. Valve Size.
 - e. Pipe Size.
 - f. Configuration.
 - g. Flow Characteristics.

- h. Capacity.
- i. Valve Cv.
- j. Design Pressure Drop.
- k. Pressure Drop at Design Flow.
- I. Fail Position.
- m. Close-off Pressure.
- n. Valve and Actuator Model Number and Type.
- 11. Indoor modular air handling units (Section 23 7313) and mixed flow return air fans (Section 23 3413) provided under this project will have piezometer type sensors mounted at fan inlets by fan manufacturer. Fan manufacturer will provide fan specific flow coefficients and equations that can be used to calculate fan airflow based on measured pressure differential at fan inlet. TCC shall provide the following:
 - a. Quantity of pressure transducers so that each individual fan is served by a dedicated pressure transducer. Each pressure transducer shall have a range that is selected based on scheduled maximum airflow for each fan. TCC shall submit a schedule that shows the following calculations for each fan/pressure transducer:
 - 1) Pressure drop at maximum scheduled airflow for each fan using fan manufacturer's flow coefficient.
 - 2) Recommended transducer range.
 - b. Pneumatic tubing as required to interconnect all piezometer type sensors and pressure transducer.
 - c. Fasteners and supports as required to securely attached tubing, pressure transducers, conduits, wiring, and the like for a complete installation.
- 12. Airflow Measuring Station Schedule:
 - a. The manufacturer's authorized representative shall prepare the airflow measuring station submittal, or review and approve in writing the submittal prepared by the TCC prior to submission to the Architect/Engineer and prior to installation. The representative shall review air handling equipment submittals and duct fabrication drawings to ensure that all AFMS locations meet the appropriate parameters to achieve proper installation and the specified accuracy. Comply with all manufacturer's installation requirements including straight up and downstream duct lengths. Install airflow straighteners if required by the manufacturer based on installation constraints. The Architect/Engineer shall be notified for approval of any deviations.
 - b. Submit product data sheets for airflow measuring devices indicating minimum placement requirements, sensor density, sensor distribution, and installed accuracy to the host control system.
 - c. Submit installation, operation, and maintenance documentation.
- 13. Product Data Sheets: Required for each component that includes: unique identification tag that is consistent throughout the submittal, manufacturer's description, technical data, performance curves, installation/maintenance instructions, and other relevant items. When manufacturer's literature applies to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted or clearly indicated by other means. Each submitted piece of literature and drawings shall clearly reference the specification and/or drawing that the submittal is to cover. General catalogs shall not be accepted as cutsheets to fulfill submittal requirements.
- 14. Provide PICS files indicating the BACnet functionality and configuration of each device.
- 15. Provide documentation of submitted products that have been tested and listed by the BACnet Testing Laboratory (BTL), or provide a letter on the manufacturer's company letterhead indicating the anticipated date by which testing is expected to be completed. If, for any reason, BTL testing and listing has not been completed, a written commitment to upgrade installed controls to a version

that meets BTL testing and listing requirements if problems are found during BTL testing is required.

- 16. Graphic Display: Include a sample graphic of each system and component identified in the points list with a flowchart (site map) indicating how the graphics are to be linked to each other for system navigation.
- 17. Software: A list of operating system software, operator interface software, color graphic software, and third-party software.
- 18. Control System Demonstration and Acceptance: Provide a description of the proposed process, along with all reports and checklists to be used.
- 19. Clearly identify work by others in the submittal.
- 20. Quantities of items submitted may be reviewed but are the responsibility of the Contractor to verify.
- C. Operation and Maintenance Manual:
 - 1. In addition to the requirements of Section 23 0500, submit an electronic copy of the O&M manuals in PDF format.
 - 2. Provide one complete set of manuals.
 - 3. Each O&M manual shall include:
 - a. Table of contents with indexed tabs dividing information as outlined below.
 - b. Definitions: List of all abbreviations and technical terms with definitions.
 - c. Warranty Contacts: Names, addresses, and 24-hour telephone numbers of contractors installing equipment and controls and service representatives of each.
 - d. Licenses, Guarantees, and Warranties: Provide documentation for all equipment and systems.
 - e. System Components: Alphabetical list of all system components, with the name, address, and telephone number of the vendor.
 - f. Operating Procedures: Include procedures for operating the control systems; logging on/off; enabling, assigning, and reporting alarms; generating reports; collection, displaying, and archiving of trended data; overriding computer control; event scheduling; backing up software and data files; and changing setpoints and other variables.
 - g. Programming: Description of the programming language (including syntax), statement descriptions (including algorithms and calculations used), point database creation and modification, program creation and modification, and use of the editor.
 - h. Engineering, Installation, and Maintenance: Explain how to design and install new points, panels, and other hardware; recommended preventive maintenance procedures for all system components, including a schedule of tasks (inspection, cleaning, calibration, etc.), time between tasks, and task descriptions; how to debug hardware problems; and how to repair or replace hardware. A list of recommended spare parts.
 - i. Original Software: Complete original issue CDs for all software provided, including operating systems, programming language, operator workstation software, and graphics software.
 - j. Software: One set of CDs containing an executable copy of all custom software created using the programming language, including the setpoints, tuning parameters, and object database.
 - k. Graphics: A glossary or icon symbol library detailing the function of each graphic icon and graphics creation and modification. One set of CDs containing files of all color graphic screens created for the project.
- D. Training Manual:
 - 1. Provide a course outline and training manuals for each training class.

- E. Record Documents:
 - 1. Submit record documentation per Section 23 0500.
 - 2. Provide a complete set of "as-built" drawings and application software on CDs. Provide drawings as AutoCAD[™] or Visio[™] compatible files. Provide two copies of the "as-built" drawings with revisions clearly indicated in addition to the documents on compact disk. All as-built drawings shall also be installed on the FMCS server in a dedicated directory. Provide all product data sheets in PDF format.
 - 3. Submit two hard copies and one electronic copy of as-built versions of the shop drawings, including product data and record drawings with revisions clearly indicated. Provide floor plans showing actual locations of control components including panels, thermostats, sensors, and hardware.
 - 4. Provide all completed testing and commissioning reports and checklists, along with all trend logs for each system identified in the points lists.
 - 5. Submit printouts of all graphic screens with current values (temperatures, pressures, etc.) to the Architect/Engineer verifying completion and proper operation of all points.

1.03 DELIVERY, STORAGE AND HANDLING

- A. Provide factory-shipping cartons for each piece of equipment and control device. Maintain cartons through shipping, storage, and handling as required to prevent equipment damage. Store equipment and materials inside and protected from weather.
- B. Factory-Mounted Components: Where control devices specified in this section are indicated to be factory mounted on equipment, arrange for shipping control devices to unit manufacturer.

1.04 PRODUCTS FURNISHED BUT NOT INSTALLED UNDER THIS SECTION

- A. Control Valves.
- B. Flow Switches.
- C. Temperature Sensor Sockets.
- D. Gauge Taps.
- E. Automatic Dampers.

1.05 AGENCY AND CODE APPROVALS

- A. All products shall have the following agency approvals. Provide verification that the approvals exist for all submitted products with the submittal package.
 - 1. UL-916; Energy Management Systems.
 - 2. C-UL listed to Canadian Standards Association C22.2 No. 205-M1983 "Signal Equipment."
 - 3. EMC Directive 89/336/EEC (European CE Mark).
 - 4. FCC, Part 15, Subpart J, Class A Computing Devices.

1.06 ACRONYMS

- A. Acronyms used in this specification are as follows:
 - 1. B-AAC BACnet Advanced Application Controller
 - 2. B-ASC BACnet Application Specific Controller
 - 3. BTL BACnet Testing Laboratories
 - 4. DDC Direct Digital Controls
 - 5. FMCS Facility Management and Control System
 - 6. GUI Graphic User Interface
 - 7. IBC Interoperable BACnet Controller
 - 8. IDC Interoperable Digital Controller
 - 9. LAN Local Area Network

- 10. NAC Network Area Controller
- 11. ODBC Open DataBase Connectivity
- 12. OOT Object Oriented Technology
- 13. OPC Open Connectivity via Open Standards
- 14. PICS Product Interoperability Compliance Statement
- 15. PMI Power Measurement Interface
- 16. POT Portable Operator's Terminal
- 17. TCC Temperature Control Contractor
- 18. TCS Temperature Control System
- 19. WAN Wide Area Network
- 20. WBI Web Browser Interface

1.07 SUMMARY

- A. The Owner intends to install a new control system for the entire facility in the near future. The system will use the Niagara Framework with BACnet. Provide a new standalone BACnet controller for the air handling unit and associated components for its operation. The new controller shall include an LCD display to allow Owner to review controls and make adjustments. The new controller shall use Niagara Framework as noted below.
- B. Niagara Framework/Tridium Based Control System: The TCS provided by the TCC must use the BACnet communication protocol over the standard network. All DDC controllers used in the HVAC controls and lighting controls must be provided with Tridium AX Wizards for use within the Niagara framework.
- C. TCC shall furnish all labor, materials, equipment, and service necessary for a complete and operating Temperature Control System (TCS) and Facility Management and Control System (FMCS) using Direct Digital Controls as shown on the drawings and as described herein.
- D. All labor, material, equipment and software not specifically referred to herein or on the plans that is required to meet the intent of this specification shall be provided without additional cost to the Owner.
- E. The Owner shall be the named license holder of all software associated with any and all incremental work on the project.

1.08 SYSTEM DESCRIPTION

- A. The entire TCS shall be comprised of a stand along controller with LCD display with future networking capabilities communicating via the following protocol to a future NAC. Temperature Control System products shall be as specified below.
- B. Provide materials and labor necessary to connect factory supplied control components.
- C. Provide central and remote hardware, software, and interconnecting wire and conduit.
- D. For the dedicated configuration tool provided, it is preferable that it be launched from within the applicable Network Management Software. If not, include any software required for controller configuration as a leave-behind tool with enough license capability to support the installation.
- E. Niagara Framework (Definition):
 - Niagara Framework: A set of hardware and software specifications for building and utility control owned by Tridium Inc. and licensed to multiple vendors. The framework consists of front end (M&C) software, web-based clients, field level control hardware, and engineering tools.
 - 2. Niagara Framework Supervisory Gateway: DDC hardware component of the Niagara Framework. A typical Niagara architecture has Niagara-specific supervisory gateways at the IP level and other (non-Niagara specific) controllers on field networks (TP/FT-10, MS/TP, etc.) beneath the Niagara supervisory gateways. The Niagara specific controllers function as a gateway between the Niagara framework protocol (Fox protocol) and the field network beneath. These supervisory gateways may also be used as general-purpose controllers and also have the capability to provide a web-based user interface. Note that different vendors refer to this component by different names. The most

common name is "JACE", which is used in this specification generically; other names include (but are not limited to)"EC-BOS", "FX-40", "TMN", "SLX" and "UNC".

F. Connection:

1. System shall be a complete hard-wired system. Wireless control systems/functions are NOT acceptable.

1.09 SOFTWARE LICENSE AGREEMENT

- A. The Owner shall be the named license holder of all software associated with any and all incremental work on the project(s). In addition, the Owner shall receive ownership of all job-specific configuration documentation, data files, configuration tools, and application-level software developed for the project. This shall include, but is not limited to, all custom, job-specific software code and documentation for all configuration and programming that is generated for a given project and/or configured for use with the NAC, FMCS Server(s), and any related LAN/WAN/intranet and/or Internet connected routers and devices. Provide the Owner with all required IDs and passwords for access to any component or software program. The Owner shall determine which organizations shall be named in the SI organization ID ("orgid") of all software licenses. Owner shall be free to direct the modification of the "orgid" in any software license, regardless of supplier.
- B. For Niagara based systems, it is the express goal of this specification to implement an open system that will allow products from various suppliers to be integrated into a unified system in order to provide flexibility for expansion, maintenance, and service of the system. The Owner shall be the named license holder of all software associated with any and all incremental work on the project(s).
 - 1. All Niagara Framework components have an unrestricted interoperability license with a Niagara Compatibility Statement (NiCS) following the Tridium Open NiCS Specification and have a value of "ALL" for "Station Compatibility In", "Station Compatibility Out", "Tool Compatibility In", and "Tool Compatibility Out". Note that this will result in the following entries in the license file:
 - a. accept.station.in="*"
 - b. accept.station.out="*"
 - c. accept.wb.in="*"
 - d. accept.wb.out="*"
 - 2. The Owner shall be free to direct the modification of the any software license, regardless of supplier. In addition, the Owner shall receive ownership of all job specific software configuration documentation, data files, and application-level software developed for the project. This shall include all custom, job-specific software code and documentation for all configuration and programming that is generated for a given project and/or configured for use within Niagara Framework (Niagara)-based controllers and/or servers and any related LAN/WAN / intranet and internet connected routers and devices. Any and all required IDs and passwords for access to any component or software program shall be provided to the Owner. Provide all software necessary for developing software algorithms in all supervisory, programmable, and application specific direct digital controllers that are licensed to the Owner.
 - 3. Programming tools for programmable and application specific controllers that use the Niagara Framework shall not be restricted to any specific brand of JACE. Tools and controllers shall be able to connect to any brand of JACE that are provided under this specification section.
 - a. For each application generic controller with a Niagara Framework Wizard and for each application specific controller, provide Niagara Framework Wizards.
 - b. For each Niagara Framework Supervisory Gateway, provide a backup of all software within the Niagara Framework Supervisory Gateway, including configuration settings. This backup must be sufficient to allow restoration of the Niagara Framework Supervisory Gateway or the replacement of the Niagara Framework Supervisory Gateway.
 - c. Provide a Niagara Framework Engineering Tool. Submit software user manuals with the Niagara Framework Engineering Tool submittal.
 - d. Provide the Niagara Station ID for each Niagara Framework Supervisory Gateway.

C. The energy metering system is a Tridium-based system using JACE's with I/O modules for single inputs and direct communications to meters that provide multiple points of data. All meters, metering points, and wiring are furnished and installed by the TCC.

1.10 JOB CONDITIONS

A. Cooperation with Other Trades: Coordinate the Work of this section with that of other sections to ensure that the Work will be carried out in an orderly fashion. It is this Contractor's responsibility to check the Contract Documents for possible conflicts between the Work of this section and that of other crafts in equipment location; pipe, duct and conduit runs; electrical outlets and fixtures; air diffusers; and structural and architectural features.

1.11 WARRANTY

- A. Refer to Section 23 0500 for warranty requirements.
- B. Within the warranty period, any defects in the work provided under this section due to faulty materials, methods of installation or workmanship shall be promptly (within 48 hours after receipt of notice) repaired or replaced by this Contractor at no expense to the Owner.
- C. Warranty requirements include furnishing and installing all FMCS software upgrades issued by the manufacturer during the one-year warranty period.
- D. Update all software and back-ups during warranty period and all user documentation on the Owner's archived software disks.

1.12 WARRANTY ACCESS

A. The Owner shall grant to this Contractor reasonable access to the TCS and FMCS during the warranty period.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

- A. BACnet Protocol with Tridium Niagara Platform:
 - 1. Alerton
 - 2. Automated Logic: WebCTRL
 - 3. Delta Controls: ORCA
 - 4. Honeywell
 - 5. Johnson Controls: Metasys Extended Architecture
 - 6. Siemens Building Technologies: DESIGO
 - 7. Schneider Electric EcoStruxure Building Operation
 - 8. Trane Tracer SC
 - 9. Distech Controls

2.02 NETWORKS

- A. The Local Area Network (LAN) shall be a 100 megabits/sec Ethernet network supporting BACnet, Java, XML, HTTP, and SOAP. Provide support for multiple Network Area Controllers (NACs), user workstations and, if specified, a local server.
- B. Local area network minimum physical and media access requirements:
 - 1. Ethernet; IEEE Standard 802.3.
 - 2. Cable; 100 Base-T, UTP-8 wire, Category 6.
 - 3. Minimum throughput; 100 Mbps.
- C. Communication conduits shall not be installed closer than six feet from 110VAC or higher transformers or run parallel within six feet of electrical high-power cables. Route the cable as far from interference generating devices as possible. Where communication wire must cross 110VAC or higher wire, it must do so at right angles.

- D. Ground all shields (earth ground) at one point only to eliminate ground loops. Provide all shield grounding at the controller location, with the shield at the sensor/device end of the applicable wire being left long and "safed" off in an appropriate manner.
- E. There shall be no power wiring more than 30 VAC rms run in conduit with communications wiring. In cases where signal wiring is run in conduit with communication wiring, run all communication wiring and signal wiring using separate twisted pairs (24awg) in accordance with the manufacturer's wiring practices.

2.03 BACNET FMCS

- A. The intent of this specification is to provide a peer-to-peer networked, standalone, distributed control system with the capability to integrate ANSI/ASHRAE Standard 135-2001 BACnet, MODBUS, OPC, and other open and proprietary communication protocols in one open, interoperable system.
- B. The supplied computer software shall employ object-oriented technology (OOT) for representation of all data and control devices in the system. Adherence to industry standards including the latest ANSI/ASHRAE Standard 135 (BACnet) to assure interoperability between all system components is required. For each BACnet device, the device supplier must provide a PICS document showing the installed device's compliance level. Minimum compliance is Level 3; with the ability to support data read and write functionality. Physical connection of BACnet devices shall be via Ethernet (BACnet Ethernet/IP) and/or RS-485 (BACnet MSTP).
- C. Interoperable BACnet Controller (IBC):
 - Controls shall be microprocessor based Interoperable BACnet Controllers (IBC) in accordance with the latest ANSI/ASHRAE Standard 135. Provide IBCs for unit ventilators, fan coils, heat pumps, terminal air boxes (TAB) and other applications. The application control program shall reside in the same enclosure as the input/output circuitry that translates the sensor signals. Provide a PICS document showing the installed system's compliance level to ANSI/ASHRAE Standard 135. Minimum compliance is Level 3.
 - 2. The IBCs shall be listed by the BACnet Testing Laboratory (BTL) as follows:
 - a. BACnet Building Controller(s) (B-BC).
 - b. BACnet Advanced Application Controller(s) (B-AAC).
 - c. BACnet Application Specific Controller(s) (B-ASC).
 - 3. The IBCs shall communicate with the NAC.
 - 4. Each IBC sensor shall connect directly to the IBC and shall not use any of the I/O points of the controller. The IBC Sensor shall provide a two-wire connection to the controller that is polarity and wire type insensitive. The IBC sensor shall provide a communications jack for connection to the BACnet communication trunk to which the IBC controller is connected. The IBC sensor, the connected controller, and all other devices on the BACnet bus shall be accessible by the POT.
 - 5. All IBCs shall be fully application programmable and shall at all times maintain their BACnet Level 3 compliance. Controllers offering application selection only (non-programmable) require a 10% spare point capacity to be provided for all applications. Store all control sequences within or programmed into the IBC in non-volatile memory that does not depend on a battery to be retained.
 - 6. The Contractor supplying the IBCs shall provide documentation for each device, with the following information at a minimum:
 - a. BACnet Device; MAC address, name, type and instance number.
 - b. BACnet Objects; name, type and instance number.
 - 7. It is the responsibility of the Contractor to ensure that the proper BACnet objects are provided in each IBC.
D. Object Libraries:

- 1. A standard library of objects shall be included for development and setup of application logic, user interface displays, system services, and communication networks.
- 2. The objects in this library shall be capable of being copied and pasted into the user's database and shall be organized according to their function. In addition, the user shall have the capability to group objects created in their application and store the new instances of these objects in a user-defined library.
- 3. In addition to the standard libraries specified here, the system supplier shall maintain an on-line accessible (over the Internet) library, available to all registered users, to provide new or updated objects and applications as they are developed.
- 4. All control objects shall conform to the control objects specified in the BACnet specification.
- 5. The library shall include applications or objects for the following functions, at a minimum:
 - a. Scheduling Object: The schedule must conform to the schedule object as defined in the BACnet specification, providing seven-day plus holiday and temporary scheduling features and a minimum of 10 on/off events per day. Data entry to be by graphic sliders to speed creation and selection of on-off events.
 - b. Calendar Object: The calendar must conform to the calendar object as defined in the BACnet specification, providing 12-month calendar features to allow for holiday or special event data entry. Data entry to be by graphic "point-and-click" selection. This object must be "linkable" to any or all scheduling objects for effective event control.
 - c. Override Object: Provide override object that is capable of restarting equipment turned off by other energy saving programs to maintain occupant comfort or for equipment protection.
 - d. Start-Stop Time Optimization Object: Provide a start-stop time optimization object to start equipment just early enough to bring space conditions to desired conditions by the scheduled occupancy time. Also, allow equipment to be stopped before the scheduled unoccupied time just far enough ahead to take advantage of the building's "flywheel" effect for energy savings. Provide automatic tuning of all start-stop time object properties based on historical performance.
 - Demand Limiting Object: Provide a demand-limiting object that is capable of controlling e. demand for any selected energy utility (electric, oil, gas, etc.). The object shall be able to monitor a demand value and predict (using a sliding window prediction algorithm) the demand at the end of the user-defined interval period (1 to 60 minutes). This object shall also accommodate a utility meter time sync pulse for fixed interval demand control. Upon a prediction that will exceed the user-defined demand limit (supply a minimum of 6 per day), the demand limiting object shall issue shed commands to either turn off user specified loads or modify equipment setpoints to provide the desired energy reduction. If the list of sheddable equipment is not enough to reduce the demand to below the setpoint, display a message on the user's screen (as an alarm) instructing the user to take manual actions to maintain the desired demand. The shed lists are specified by the user and shall be selectable to be shed in either a fixed or rotating order to control which equipment is shed the most often. Upon suitable reductions in demand, the demand-limiting object shall restore the equipment that was shed in the reverse order in which it was shed. Each sheddable object shall have a minimum and maximum shed time property to provide both equipment protection and occupant comfort.
- 6. The library shall include control objects for the following functions:
 - a. Analog Input Object: Minimum requirement is to comply with the BACnet standard for data sharing. Allow high, low and failure limits to be assigned for alarming. Also, provide a time delay filter property to prevent nuisance alarms caused by temporary excursions above or below the user defined alarm limits.
 - b. Analog Output Object: Minimum requirement is to comply with the BACnet standard for data sharing.

- c. Binary Input Object: Minimum requirement is to comply with the BACnet standard for data sharing. The user must be able to specify either input condition for alarming. This object must also include the capability to record equipment runtime by counting the amount of time the hardware input is in an "on" condition. The user must be able to specify either input condition as the "on" condition.
- d. Binary Output Object: Minimum requirement is to comply with the BACnet standard for data sharing. Properties to enable minimum on and off times for equipment protection as well as start-to-start delay must be provided. Incorporate the BACnet Command Prioritization priority scheme to allow multiple control applications to execute commands on this object with the highest priority command being invoked. Provide 16 levels of priority as a minimum. Systems not employing the BACnet method of contention resolution are not acceptable.
- e. PID Control Loop Object: Minimum requirement is to comply with the BACnet standard for data sharing. Each individual property must be adjustable to allow proportional control only, or proportional with integral control, or proportional, integral and derivative control.
- f. Comparison Object: Allow a minimum of two analog objects to be compared to select either the highest, lowest, or equality between the two linked inputs. Also, allow limits to be applied to the output value for alarm generation.
- g. Math Object: Allow a minimum of four analog objects to be tested for the minimum or maximum, or the sum, difference, or average of linked objects. Also, allow limits to be applied to the output value for alarm generation.
- h. Custom Programming Objects: Provide a blank object template for the creation of new custom objects to meet specific user application requirements. This object must provide a simple BASIC-like programming language that is used to define object behavior. Provide a library of functions including, but not limited to, math and logic functions and string manipulation. Also, provide a comprehensive on-line debug tool to allow complete testing of the new object. Allow new objects to be stored in the library for reuse.
- i. Interlock Object: Provide an interlock object that provides a means of coordination of objects within a piece of equipment, such as an air handler or other similar types of equipment. An example is to link the return fan to the supply fan such that, when the supply fan is started, the return fan object is also started automatically without the user having to issue separate commands or to link each object to a schedule object. In addition, the control loops, damper objects, and alarm monitoring (such as return air, supply air, and mixed air temperature objects) will be inhibited from alarming during a user-defined period after startup to allow for stabilization. When the air handler is stopped, the interlocked return fan is also stopped, the outside air damper is closed, and other related objects within the air handler unit are inhibited from alarming nuisance alarms during the off period.
- j. Temperature Override Object: Provide an object whose purpose is to override a binary output to an "on" state in the event a user-specified high or low limit value is exceeded. Link this object to the desired binary output object as well as to an analog object for temperature monitoring to cause the override to be enabled. This object will execute a start command at the Temperature Override level of start/stop command priority, unless changed by the user.
- k. Composite Object: Provide a container object that allows a collection of objects representing an application to be encapsulated to protect the application from tampering or to more easily represent large applications. This object must have the ability to allow the user to select the appropriate parameters of the "contained" application that are represented on the graphic shell of this container.
- 7. The object library shall include objects to support the integration of devices connected to the Network Area Controller (NAC). Provide the following as part of the standard library included with the programming software:
 - a. LonMark/LonWorks Devices: These devices shall include, but not be limited to, devices for control of HVAC, lighting, access, and metering. Provide LonMark manufacturer-specific objects to facilitate simple integration of these devices. Support all network variables defined

in the LonMark profile. The device manufacturer shall provide information (type and function) regarding network variables not defined in the LonMark profile.

- b. For devices not conforming to the LonMark standard, provide a dynamic object that can be assigned to the device based on network variable information provided by the device manufacturer. Device manufacturer shall provide an XIF file, resource file, and documentation for the device to facilitate device integration.
- c. For BACnet devices, provide the following objects:
 - 1) Analog In.
 - 2) Analog Out.
 - 3) Analog Value.
 - 4) Binary.
 - 5) Binary In.
 - 6) Binary Out.
 - 7) Binary Value.
 - 8) Multi-State In.
 - 9) Multi-State Out.
 - 10) Multi-State Value.
 - 11) Schedule Export.
 - 12) Calendar Export.
 - 13) Trend Export.
 - 14) Device.
- d. For each BACnet object, provide the ability to assign the object a BACnet device and object instance number.
- e. For BACnet devices, provide the following support at a minimum:
 - 1) Segmentation.
 - 2) Segmented Request.
 - 3) Segmented Response.
 - 4) Application Services.
 - 5) Read Property.
 - 6) Read Property Multiple.
 - 7) Write Property.
 - 8) Write Property Multiple.
 - 9) Confirmed Event Notification.
 - 10) Unconfirmed Event Notification.
 - 11) Acknowledge Alarm.
 - 12) Get Alarm Summary.
 - 13) Who-has.
 - 14) I-have.
 - 15) Who-is.
 - 16) I-am.
 - 17) Subscribe COV.
 - 18) Confirmed COV notification.

- 19) Unconfirmed COV notification.
- 20) Media Types.
- 21) Ethernet.
- 22) BACnet IP Annex J.
- 23) MSTP.
- 24) BACnet Broadcast Management Device (BBMD) function.
- 25) Routing.

2.04 SYSTEM PROGRAMMING

- A. The GUI software shall perform system programming and graphic display engineering. Access to the GUI software shall be through password access as assigned by the system administrator.
- B. Provide a library of control, application, and graphic objects to enable creation of all applications and user interface screens. Applications shall be created by selecting the control objects from the library, dragging or pasting them on the screen, and linking them together using a built-in graphic connection tool. Completed applications may be stored in the library for future use. GUI screens shall be created in the same fashion. Data for the user displays shall be obtained by graphically linking the user display objects to the application objects to provide "real-time" data updates. Any real-time data value or object property may be connected to display its current value on a user display. Provide all software tools or processes to create applications and user interface displays.
- C. Programming Methods:
 - 1. Provide the capability to copy objects from the supplied libraries or from a user-defined library to the user's application. Link objects with a graphic linking scheme by dragging a link from one object to another. Object links will support one-to-one, many-to-one, or one-to-many relationships. Linked objects shall maintain their connections to other objects regardless of where they are positioned on the page and shall show link identification for links to objects on other pages for easy identification. Links will vary in color depending on the type of link; e.g., internal, external, hardware, etc.
 - 2. Configuration of each object shall be done through the object's property sheet using fill-in-the-blank fields, list boxes, and selection buttons. Use of custom programming, scripting language, or a manufacturer-specific procedural language for configuration is not acceptable.
 - 3. The software shall provide the ability to view the logic in a monitor mode. When on-line, the monitor mode shall provide the ability to view the logic in real time for easy diagnosis of the logic execution. When off-line (debug), the monitor mode shall allow the user to set values to inputs and monitor the logic for diagnosing execution before it is applied to the system.
 - 4. All programming shall be done in real time. Systems requiring the uploading, editing, and downloading of database objects are not allowed.
 - 5. The system shall support object duplication in a customer's database. An application, once configured, can be copied and pasted for easy reuse and duplication. All links, other than to the hardware, shall be maintained during duplication.

2.05 DDE DEVICE INTEGRATION

- A. The NAC shall support the integration of device data via Dynamic Data Exchange (DDE) over the Ethernet network. The NAC shall act as a DDE client to another software application that functions as a DDE server.
- B. Provide the required objects in the library included with the Graphic User Interface programming software to support the integration of these devices into the FMCS. Objects provided shall include, at a minimum:
 - 1. DDE Generic Al Object.
 - 2. DDE Generic AO Object.
 - 3. DDE Generic BO Object.
 - 4. DDE Generic BI Object.

2.06 SOFTWARE

- A. IDC/IBCs shall operate totally standalone and independent of a central computer for all specified control applications.
- B. Software shall include a complete operating system (OS), communications handler, point processing, energy management application packages as specified herein, standard control algorithms and specific control sequences (IDC/IBC) and an Owner/user custom control calculation package complete with interpreter.
- C. OS software shall be PROM resident, operate in real time, provide prioritized task scheduling, control time programs, monitor and manage communications, and scan inputs and outputs.
- D. Each IDC/IBC panel shall include the following energy management routines:
 - 1. Time of day scheduling.
 - 2. Optimum start/stop.
 - 3. Peak demand limiting.
 - 4. Economizer control.
 - 5. PID control.
 - 6. Supply air reset.
 - 7. Outdoor air reset.
- E. Input/output point processing software shall include:
 - 1. Update of all connected input and output points at least once per second.
 - 2. Analog to digital conversion, scaling and offset, correction of sensor non-linearity, sensing no response or failed sensors, and conversion of values to 32-bit floating point format. Retain both the maximum and minimum values sensed for each analog input in memory. It shall be possible to input subsets of standard sensor ranges to the A/D converter and assign gains to match the full-scale 32-bit conversion to achieve high accuracy readout.
 - 3. A reasonability check on all analog inputs against previous values and discarding of values falling outside preprogrammed reasonability limits.
 - 4. Assignment of proper engineering units and status conditions to all inputs and outputs.
 - 5. Analog input alarm comparison with the ability to assign two individual sets of high and low limits (warning and alarm) to an input or to assign a set of floating limits (alarm a reset schedule or FMCS control point) to the input. Assign each alarm a unique differential to prevent a point from oscillating in and out of alarm. Make alarm comparisons of each scan cycle.
 - 6. Adjustment of timing from two seconds to two minutes in one-second increments to eliminate nuisance alarms on startup.
- F. Command Control software shall manage the receipt of commands from the server and from control programs.
 - 1. Provide command delay to prevent simultaneous energizing of loads. Delay must be programmable from 0 to 30 seconds.
 - 2. Assign each command a command and residual priority to manage conflicts created by multiple programs having access to the same command point. Allow only outputs with a higher command priority to execute. Whenever a command is allowed to execute, its assigned residual priority shall replace the existing residual priority.
 - 3. A "fixed mode" option (override) shall allow inputs to and outputs from control programs to set to a fixed state or value. When in the "fixed mode", assign inputs and outputs high residual command priority to prevent override by application programs.

- G. Alarm lockout software shall prevent nuisance alarms. On initial start-up of mechanical equipment, assign a "timed lockout" period to analog points to allow them to reach a stable condition before activating alarm comparison logic. Lockout period shall be programmable for each point from 0 to 90 minutes in oneminute increments.
- H. A "hard lockout" shall also be provided to positively lock out alarms when equipment is turned off or when a true alarm depends on the condition of an associated point. Hard lockout points and lockout initiators shall be operator programmable.
- I. Runtime shall be accumulated based on the status of a digital input point. It shall be possible to totalize either on time or off time up to 10,000 hours with one-minute resolution. Runtime counts shall reside in non-volatile memory and have DCP resident runtime limits assignable through the operator's terminal.
- J. A transition counter shall count the number of times a device is cycled on or off. Counter shall be nonvolatile and capable of counting 600,000 cycles. Limits shall be assignable to counts to provide maintenance alarm printouts.
- K. Custom IDC/IBC programs shall meet the control strategies called for in the sequence of operation of these specifications. Each IDC/IBC shall have resident in its memory and available to the programs a full library of IDC/IBC algorithms, intrinsic control operators, arithmetic, logic, and relational operators. Provide the following features:
 - 1. Proportional Control, Proportional plus Integral (PI), Proportional plus Integral plus Derivative (PID), and Adaptive Control (self-learning). Use Adaptive Control where the controlled flow rate is variable (such as TAB units and variable flow pumping loops). The adaptive control algorithm shall monitor the loop response to output corrections and adjust the loop response characteristics in accordance with the time constant changes imposed by variable flow rates. The algorithm shall operate in a continuous self-learning manner and shall retain in memory a stored record of the system dynamics so that, on system shutdown and restart, the learning process starts from where it left off. Standard PID algorithms are not acceptable substitutes for variable flow applications since they will provide satisfactory control at only one flow rate and will require continued manual fine tuning.
 - 2. All IDC/IBC setpoints, gains and time constants associated with IDC/IBC programs shall be available to the operator for display and modification via the operator workstation.
 - 3. The execution interval of each IDC/IBC loop shall be adjustable from 2 to 120 seconds in onesecond increments.
 - 4. IDC/IBC control programs shall assign initialization values to all outputs so controlled devices assume a failsafe position on start-up.
- L. Provide time and event programming (TEP) capability to initiate a controlled sequence of events for execution at a specific time or upon the occurrence of an event. Minimum program features required are:
 - 1. Analog points commandable to a specific value.
 - 2. Digital points commandable to a specific state; e.g. on or off; fast, slow or off.
 - 3. Initiator to be a specific day and time or a specific event; e.g. an alarm.
 - 4. Manual initiation via operator's command.
 - 5. Commands must honor command delays (to prevent current surges), and assigned minimum ON and OFF times.
 - 6. Commands must honor command and residual priority structures allowing higher priority commands (like smoke control) to override lower priority commands (like time of day scheduling) and residual priority.
 - 7. Ability to chain TEPs.
 - 8. Ability to enable and disable TEPs individually.
 - 9. Ability to enable/disable TEP initiators.

- M. Store Energy Management application programs and associated data files in non-volatile or 72-hour battery backed RAM memory. Individual programs shall be accessible from the operator workstation for enabling/disabling and program parameter modification and shall include:
 - 1. Time Programs:
 - a. Provide an independent start and stop program time for each system identified in the points list.
 - b. It shall be possible to assign two independent start and stop times/days to any equipment connected to a controller.
 - 2. Exception Day Scheduling:
 - a. Provide an Exception Day program for holiday and other planned exceptions to time programs. Exception schedules shall be DSC resident and operator programmable up to one year in advance.
 - b. The program shall allow definition of up to 32 exception time spans. Define each span by calendar start day and calendar stop day.
 - 3. An IDC/IBC resident temporary scheduler shall allow operators to modify present time program control of equipment. Minimum feature set required is:
 - a. Ability to alter time schedules as much as six days in advance.
 - b. Ability to alter either start time, stop time or both for each day.
 - c. Temporary schedule shall be in effect for all days specified.
 - d. Automatically delete the temporary schedule and restore program to normal schedule after execution.
 - e. Ability to assign schedule changes as permanent as well as temporary.
- N. The IDC/IBC shall have built-in, non-descriptive, self-test procedure for checking the indication lights, digital display, and memory. It shall display advisories for maintenance, performance, and/or software problems.
- O. All electronics shall be:
 - 1. Standard locally stocked modular boards.
 - 2. Plug-in type.
 - 3. Furnish all ROM programs unlocked.

2.07 CONTROL DAMPERS

- A. Rectangular Control Dampers Standard Construction:
 - 1. Shall be licensed to bear the AMCA Certified Rating Seal.
 - 2. Test leakage and pressure drop per AMCA 500.
 - 3. Frame: Hat-shaped channel, minimum 12 gauge extruded aluminum, and minimum 4" deep. Caulk or weld seams to prevent leakage.
 - 4. Blades: Minimum 12 gauge extruded aluminum airfoil design, minimum 6" wide, and overlapping blades and blade seals (overlapping blade seals only is unacceptable).
 - 5. Shaft: Non-cylindrical, solid aluminum or zinc plated steel with opening in blade to match profile of shaft. Shaft shall be securely fastened to the blade and of sufficient length to mount direct-coupled actuator. Damper manufacturer shall provide drive pin extensions and outboard bearing support brackets as required.
 - 6. Bearings: Acetal (Delrin/Celcon) inner bearing fixed to an aluminum shaft, rotating within a polycarbonate outer bearing inserted in the frame. Provide thrust bearings for vertical damper applications.
 - 7. Blade Seals: Extruded silicone gaskets secured in an integral slot within the blade.

- 8. Side Seals: Stainless steel compression type or extruded silicone gasket secured in an integral slot within the frame.
- 9. Linkage: Shall be concealed in the frame, constructed of aluminum or corrosion-resistant zinc plated steel, and securely fastened to shaft. Blades linked for opposed operation, unless noted otherwise on the drawings. Blades shall close evenly. Use one direct-coupled actuator per damper section. Jack-shafting is not acceptable.
- 10. Size Limits: 48" maximum horizontal blade length, 24 square foot maximum area per damper. Total cross-sectional area of dampers in ducts shall be at least as large as the duct without the use of blank-off sections.
- 11. Maximum Leakage: Class 1A at 1" w.c. pressure differential for a 24" x 24" damper.
- 12. Maximum Pressure Drop for Opposed Blade Damper: 0.15" for 8,000 CFM through a 24" x 24" damper (2000 fpm).

2.08 DAMPER ACTUATORS

- A. Damper Actuators Electronic:
 - Actuator shall be UL 873 or 60730 listed and provided with NEMA housing for applicable environment, electronic overload protection to prevent actuator damage due to over-rotation. Mount actuator by means of a V-bolt dual nut clamp with a V-shaped toothed cradle, directly couple and mount to the valve bonnet stem, or ISO-style direct-coupled mounting pad. Actuators shall be capable of being mechanically and electrically paralleled to increase torque, if required.
 - 2. Actuators shall be warranted for a period of five (5) years from the date of production, with the first two (2) years unconditional.
 - 3. Proportional actuator position shall be proportional to analog or pulse width modulating signal from electronic control system.
 - 4. Fail-Safe Dampers: Where shown on the drawings or sequences, fail-safe mechanism shall operate the damper to the fail position following power interruption.
 - a. Mechanical/Spring: Mechanical spring return mechanism to drive controlled drive to an end position (open or close) on loss of power.
 - b. Electronic: Electronic fail-safe shall incorporate an active balancing circuit to maintain equal charging rates among the capacitors. The power fail position shall be proportionally adjustable between 0 to 100% in 10 percent increments with a 10 second operational delay.
 - 5. Feedback: Where shown on drawings or sequences, provide analog feedback signal for positive position indication.
 - 6. Damper End Switches: Where shown on the drawings or sequences, provide end switches to prove damper reaches open/closed position.

2.09 HYDRONIC CONTROL VALVES

- A. General:
 - 1. Size two-way modulating valves to provide a pressure drop at full flow of 4 to 5 psi .
 - 2. Modulating two-way valves shall have equal percentage flow characteristics.
 - 3. Piping geometry correction factors for C_v ratings shall be used and stated for ball valves, butterfly valves, or non-characterized valves.

B. Modulating:

- 1. Globe 1/2" to 2":
 - a. Design Pressure: ANSI Class 250
 - 1) Design Temperature: 280°F
 - 2) Design Flow Differential Pressure Rating: 35 psi
 - 3) Leakage: ANSI Class VI

- b. Bronze or brass body, trim and plug; stainless steel stem; stainless steel or bronze seat; EPDM, PTFE or RTFE packing; threaded ends.
- 2. Ball 2" and under:
 - a. Design Pressure: 400 psi
 - 1) Design Temperature: 250°F
 - 2) Design Flow Differential Pressure Rating: 35 psi
 - 3) Leakage: 0%
 - b. Bronze or brass body, nickel plated brass or stainless steel stem, chrome plated brass or stainless steel ball, EPDM, PTFE or RTFE seats and seals, PTFE characterizing disc, screwed ends.

2.10 VALVE ACTUATORS

- A. General:
 - 1. Actuators shall be sized to operate the valve through its full range of motion and shall close against pump shutoff pressure without producing audible noise at any valve position.
 - 2. Provide visual position indication.
 - 3. Mount actuator directly on valve or provide linear motion assembly as required for valve type.
- B. Valve Actuators Electronic:
 - Actuator shall be UL 873 or 60730 listed and provided with NEMA housing for applicable environment, electronic overload protection to prevent actuator damage due to over-rotation. Mount actuator by means of a V-bolt dual nut clamp with a V-shaped toothed cradle, directly couple and mount to the valve bonnet stem, or ISO-style direct-coupled mounting pad. Actuators shall be capable of being mechanically and electrically paralleled to increase torque, if required.
 - 2. Actuators shall be warranted for a period of five (5) years from the date of production, with the first two (2) years unconditional.
 - 3. Proportional actuator position shall be proportional to analog or pulse width modulating signal from electronic control system.
 - 4. Fail-Safe Valves: Where shown on the drawings or sequences, fail-safe mechanism shall operate the valve to the fail position following power interruption.
 - a. Mechanical/Spring: Mechanical spring return mechanism to drive controlled drive to an end position (open or close) on loss of power.
 - b. Electronic: Electronic fail-safe shall incorporate an active balancing circuit to maintain equal charging rates among the capacitors. The power fail position shall be proportionally adjustable between 0 to 100% in 10 percent increments with a 10 second operational delay.
 - 5. Feedback: Where shown on drawings or sequences, provide analog feedback signal for positive position indication.

2.11 CONTROL INSTRUMENTATION

- A. Temperature Measuring Devices:
 - 1. Low Limit Switch:
 - a. Provide one foot of sensing element for each one square foot of coil area, maximum element length 25 feet, of the vapor tension type, so that any point along the entire length of measuring element can trigger the switch.
 - b. Provide 3" minimum radius capillary support clips at each turn.
 - c. Furnish each thermostat with one single pole, single throw normally-opened switch and one single pole, single throw normally-closed auxiliary switch.
 - d. Setpoint range shall be 15°F to 55°F with a permanent stop at 35°F.
 - e. Differential shall be fixed at approximately 5°F and supplied with manual reset.

- B. Temperature Sensors:
 - 1. Duct Temperature Sensor:
 - a. RTD type averaging sensor. 1000 ohm platinum RTD; accuracy: minimum +/- 1.2°F; range 40°F-220°F.
 - b. Sensing element shall have a minimum of 1 foot of sensor length for each 2 square feet of duct or coil area. Sensor shall be arranged evenly across the duct or coil such that no point in the duct or coil is more than 1 foot away from the sensor.
 - c. Probe type thermistors are acceptable in VAV box duct applications downstream of reheat coils.
 - 2. Water Temperature Sensor:
 - a. RTD type. 1000 ohm platinum RTD; accuracy: minimum +/- 0.65°F; range -40°F-220°F.
 - b. Thermowell: RTD must be installed within a 316 stainless steel thermowell using a nonhardening heat conducting paste. Thermowell shall be rated for a minimum static pressure of 500 psig at the maximum operating temperature and be capable of withstanding water velocities of up to 27 fps. The sensor shall be mounted so that it extends into the flow stream to a minimum of 1/3 of the diameter of the pipe. For pipes greater than 10 inch diameter, thermowell shall be installed in a position 45 degrees from the bottom of the pipe. Separate thermometers, as specified elsewhere, shall be installed within 2 feet of each temperature sensor.
- C. Humidity Measuring Devices:
 - 1. Humidity Sensors:
 - a. Duct Humidity Sensors: Fully electronic with no moving parts or parts requiring periodic service. Accuracy shall be ± 2% of reading.
- D. Enthalpy Sensors: Duct-mounted enthalpy sensor shall include solid state temperature and humidity sensors with electronics that shall output a 4-20 ma signal input to the controller upon a varying enthalpy (total heat) to enable economizer modes of operation when outside air enthalpy is suitable for free cooling.
- E. Pressure Measuring Devices
 - 1. Differential Pressure Switches:
 - a. Standard Pressure Switches:
 - 1) Diaphragm-activated gauge with 4-3/4" dial, cast aluminum case, sealed interior, designed to resist shock and vibration, and rated for 15 psig.
 - 2) Accuracy shall be \pm 3% of full scale maximum throughout entire range at 70°F.
 - 3) Provide mounting brackets, probes, and shutoff valves required for proper installation.
 - 4) The range and service shall be as required for application or as noted on the drawings.
 - 5) Provide two (2) photo-transistor-activated circuits and two (2) DPDT relays for both high or low limit alarms or controls.
 - 6) Provide latching relays that require manual reset once activated.
 - 7) Acceptable Manufacturer: Dwyer Photohelic Series 3000.
 - 2. Pressure Transmitters/Transducer:
 - a. Air-to-Air:
 - 1) Provide transducer having the following minimum performance for measuring duct static pressure for VFD control or measuring differential pressure across filter banks:
 - a) Accuracy: ±1.0% FS
 - b) Non-Linearity, BFSL: ±0.96% FS

- c) Hysteresis: 0.10% full scale
- d) Non-Repeatability: 0.05% full scale
- e) Thermal Effects (compensated range): 0°F to +150°F
- f) Maximum Line Pressure: 10 PSI
- g) Zero/Span Shift: 0.033%FS/°F
- h) Long Term Stability: 0.5%FS/1year
- 2) Provide transducer with the following minimum performance for measuring differential pressure across piezometer fan inlet airflow measuring stations:
 - a) Unit shall come factory equipped with static tube attached.
 - b) Unit shall include: (1) LCD shall display differential pressure on face of sensor enclosure over the entire operational range, and (2) IPCC-rated polycarbonate enclosure with short circuit proof outputs and reverse polarity protected inputs.
 - c) Accuracy at 72°F: ±0.25% FS
 - d) Stability: ±0.25% full scale per year
 - e) Temperature Error: (1) Zero: ±0.025% full scale per °C, (2) Span: Maximum ±0.03% full scale per °C
 - f) Environmental Operating Range: 32°F to 140°F.
 - g) Overpressure: Proof: (1) 2 psi, (2) Burst: 3 psi
 - h) Humidity: 0% to 95% RH non-condensing.
- F. Current Measuring Devices:
 - 1. Current Switches for Constant Speed Motors:
 - a. Digital device rated for amperage load of motor or device with split core design, adjustable high and low trip points, 600 VAC rms isolation, induced power from the monitored load, LED indicator lamps for output status and sensor power. The device shall sense overloading, belt-loss, and power failure with a single signal.
 - 2. Current Switches for Motors Controlled by VFD:
 - a. Digital device rated for amperage load of motor or device with split core design, factory programmed to detect motor undercurrent conditions on variable or constant volume loads, self-calibrating, positive status indication, LED indicator lamps, 600 VAC rms isolation, induced power from the monitored load with NO output. The current sensor shall store the motor current operating parameters in non-volatile memory and have a pushbutton reset to clear the memory if the operating parameters change or the sensor is moved to another load. The device shall sense overloading, belt-loss, and power failure with a single signal. The sensor shall be mounted on the load side of variable frequency drives.
- G. Miscellaneous Devices:
 - 1. Control Relays:
 - a. Form "C" contacts rated for the application with "push-to-test" contact transfer feature and an integral LED to indicate coil energization.
 - b. Mount all relays and power supplies in a NEMA 1 enclosure beside the FMCS panel or controlled device and clearly label their functions.

2.12 CONDUIT AND BOXES

- A. Conduit and Boxes: Refer to Electrical Section 26 0533 for materials, sizing, and other requirements
- B. Conduit and Box Identification (Color and Labeling):
 - 1. Refer to the Temperature Control Contractor notes located on the mechanical cover sheet for raceway and box color requirements.
 - 2. Refer to Electrical Section 26 0553 for raceway and box labeling requirements.

2.13 WIRE AND CABLE

- A. Wire and Cable: Refer to Electrical Section 26 0513 for wire and cable materials.
 - 1. Wire and Cable Color: Refer to the Temperature Control Contractor notes located on the mechanical cover sheet for wire and cable color requirements.

PART 3 - EXECUTION

3.01 GENERAL INSTALLATION

- A. Verify that systems are ready to receive work. Beginning of installation means installer accepts existing conditions.
- B. Install system and materials in accordance with manufacturer's instructions.
- C. Drawings of the TCS and FMCS network are diagrammatic only. Any apparatus not shown but required to meet the intent of the project documents shall be furnished and installed without additional cost.
- D. Install all operators, sensors, and control devices where accessible for service, adjustment, calibration, and repair. Do not install devices where blocked by piping or ductwork. Devices with manual reset or limit adjustments shall be installed below 6'-0" if practical to allow inspection without using a ladder.
- E. Verify locations of wall-mounted devices (such as thermostats, temperature and humidity sensors, and other exposed sensors) with drawings and room details before installation. Coordinate mounting heights to be consistent with other wall-mounted devices. Maximum height above finished floor shall not exceed ADA mounting requirements.
- F. Provide valves over 3/4" size with position indicators and pilot positioners where sequenced with other controls.
- G. Mount control panels adjacent to associated equipment on vibration-free walls or freestanding angle iron supports. One cabinet may accommodate more than one system in same equipment room.
- H. After completion of installation, test and adjust control equipment.
- I. Check calibration of instruments. Recalibrate or replace.
- J. Furnish and install conduit, wire, and cable per the National Electric Code, unless noted otherwise in this section.
- K. All hardware, software, equipment, accessories, wiring (power and sensor), piping, relays, sensors, power supplies, transformers, and instrumentation required for a complete and operational FMCS system, but not shown on the electrical drawings, are the responsibility of the TCC.
- L. Remodeling:
 - 1. All room devices as indicated on the drawings shall be removed by this Contractor. The Contractor shall also prepare the wall for finishes. Preparing the wall shall include patching old anchor holes (after the anchoring device has been removed) and sanding the wall to remove old paint outlines remaining from original devices. The wall shall be painted to match the existing wall prior to the installation of the new room device. If wall covering requires patching, the Contractor shall furnish new wall covering to match existing. If new wall covering is not available to match existing, the Contractor shall furnish a white acrylic or Plexiglas plate, 1/4" thick and sized to cover the void.
- M. Labels For Control Devices:
 - 1. Provide labels indicating service of all control devices in panels and other locations.
 - 2. Labels may be made with permanent marking pen in the control panels if clearly legible.

- 3. Use engraved labels for items outside panel such as outside air thermostats.
- 4. Labels are not required for room thermostats, damper actuators and other items where their function is obvious.

N. VFDs:

- 1. This project includes several variable frequency drives to control the flow of fans and/or pumps based on a control variable.
- 2. Verify output signal required, 4-20 mA or 0-10V dc, with the EC.
- 3. If VFD has a bypass feature, auxiliary contacts on the drive may not be used for motor status. A separate relay must be used to indicate motor rotation in either hand or auto positions.
- 4. If a separate current transmitter or switch is indicated for status, install this device between the VFD and the motor. In this case, the drive status may be connected to the auxiliary contacts in the VFD.
- 5. Some devices, such as low limits and fire alarm shutdown relays, must be hardwired to the fan motor. Make connections such that fan will shut down whether in hand or auto position if the unit has a bypass feature.
- O. Airflow Stations:
 - 1. The transmitter shall be installed at a location that is protected from weather, water, and vibration.
 - 2. Mount transmitter where they can easily be read (36" to 66" above floor). Do not fasten transmitters directly to ductwork or compromise duct insulation.
 - 3. The manufacturer's authorized representative shall visit the project site during construction prior to station installations to confirm all submitted sizes, mounting requirements and locations. Size adjustments shall be made at no additional cost. The representative shall meet on site with the TCC to support and train them on proper installation procedures and calibration.
 - 4. Install labels at each sensor and transmitter identifying its service.

3.02 GRAPHIC DISPLAY

- A. Create a customized graphic for each piece of equipment indicated on the itemized points list.
- B. Components shall be arranged on graphic as installed in the field.
- C. Include each graphic point listed in the itemized points list using real time data.
- D. Provide a graphic representation of the following:
 - 1. Where there are multiple buildings, color code the campus map by the systems serving that building. The building graphic shall be linked to the graphic for that building's systems.
 - 2. Where there are multiple floors, provide color codes/designations for the areas served by each AHU and TAB by floor.
 - 3. Where multiple AHUs serve one floor, color code the areas served by each AHU. The area shall be linked to the graphic for that area's AHU.
 - 4. Provide an overall floor plan of each floor of the building color coded by zone linked to the TAB for that zone. The zone shall be linked to the graphic for that zone's TAB graphic.
 - 5. Show the location of each thermostat on the floor plan.
 - 6. Provide separate graphics showing the chilled and heating water system flow diagram. Show temperatures and flows on the flow diagram. Each piece of equipment shown on the flow diagram shall be linked to the graphic for that piece of equipment.
 - 7. Provide a graphic showing the steam system flow diagram. Show pressures and flows on the flow diagram. Each piece of equipment shown on the flow diagram shall be linked to the graphic for that piece of equipment.

- E. The FMCS shall include full graphic operator interface to display the following graphics as a minimum:
 - 1. Home page to include a minimum of six critical points: Outside Air Temperature, Outside Air Relative Humidity, Enthalpy, KWH, KW, etc.
 - 2. Graphic floor plans accurately depicting rooms, walls, hallways, and showing accurate locations of space sensors and major mechanical equipment.
 - 3. Detailed graphics for each mechanical system including AHUs, ERUs, EFs, chillers, and boilers, as a minimum.
 - 4. Access corresponding system drawings, technical literature, and sequences of operations directly from each system graphic.
- F. The FMCS shall include individual graphical buttons to access the following data stored in PDF format:
 - 1. Project control as-built documentation including all TCS drawings, diagrams and sequences of operation.
 - 2. TCS Bill of Material for each system, e.g. AHU, RTU, FCU, boiler, etc.
 - 3. Technical literature specification data sheets for all components listed in the TCS Bill of Material.

3.03 CONDUIT AND BOXES INSTALLATION

- A. Conduit and Box Installation: Refer to Electrical Section 26 0533 for execution and installation.
- B. Conduit and Box Identification (color and labeling) installation. Refer to Electrical Section 26 0553 for raceway and box identification installation.
- C. Outlet Box Schedule: Thermostat/temperature sensor:
 - 1. Dry Interior Locations: Provide 4" square galvanized steel with raised cover to fit flush with finished wall line. When located in concrete block walls, provide square edge title cover of sufficient depth to extend out to face of block or masonry boxes.
 - 2. Other Conditions: Refer to Electrical Section 26 0533 for requirements.

3.04 WIRE AND CABLE INSTALLATION

- A. Wire and Cable Installation: Refer to Electrical Section 26 0513 for execution and installation.
- B. Field Quality Control:
 - 1. Inspect wire and cable for physical damage and proper connection.
 - 2. Torque test conductor connections and terminations to manufacturer's recommended values.
 - 3. Perform continuity test on all conductors.
 - 4. Protection of cable from foreign materials:
 - a. It is the Contractor's responsibility to provide adequate physical protection to prevent foreign material application or contact with any cable type. Foreign material is defined as any material that would negatively impact the validity of the manufacturer's performance warranty. This includes, but is not limited, to overspray of paint (accidental or otherwise), drywall compound, or any other surface chemical, liquid or compound that could come in contact with the cable, cable jacket or cable termination components.
 - b. Overspray of paint on any cable, cable jacket or cable termination component will not be accepted. It shall be the Contractor's responsibility to replace any component containing overspray, in its entirety, at no additional cost to the project. Cleaning of the cables with harsh chemicals is not allowed. This requirement is regardless of the PASS/FAIL test results of the cable containing overspray. Should the manufacturer and warrantor of the structured cabling system desire to physically inspect the installed condition and certify the validity of the structured cabling system (via a signed and dated statement by an authorized representative of the structured cabling manufacturer), the Owner may, at their sole discretion, agree to accept said warranty in lieu of having the affected cables replaced. In the case of plenum cabling, in addition to the statement from the manufacturer, the Contractor

shall also present to the Owner a letter from the local Authority Having Jurisdiction stating that they consider the plenum rating of the cable to be intact and acceptable.

C. Installation Schedule:

1. Conduit terminations to all devices installed in applications with rotating equipment, expansion/contraction or vibration shall be made with flexible metallic conduit, unless noted otherwise. Final terminations to exterior devices installed in damp or wet locations shall be made with liquidtight flexible metallic conduit. Terminations in hazardous areas, as defined in the National Electrical Code, shall be made with flexible conduit rated for the environment.

3.05 FMCS INSTALLATION

- A. Coordinate voltage and ampacity of all contacts, relays, and terminal connections of equipment being monitored or controlled. Voltage and ampacity shall be compatible with equipment voltage and be rated for full ampacity of wiring or overcurrent protection of circuit controlled.
- B. Naming Conventions: Coordinate all point naming conventions with Owner standards. In the absence of Owner standards, naming conventions shall use equipment designations shown on plans.

3.06 COMMISSIONING

- A. Upon completion of the installation, this Contractor shall load all system software and start up the system. This Contractor shall perform all necessary calibration, testing and de-bugging and perform all required operational checks to ensure that the system is functioning in full accordance with these specifications.
- B. This Contractor shall perform tests to verify proper performance of components, routines, and points. Repeat tests until proper performance results. This testing shall include a point-by-point log to validate 100% of the input and output points of the FMCS system operation.
- C. This Contractor shall prove that the controls network is functioning correctly and within acceptable bandwidth criteria and shall test the system with an approved protocol analysis tool. Provide a log and statistics summary showing that each channel is within acceptable parameters. Each channel shall be shown to have at least 25% spare capacity for future expansion.
- D. Upon completion of the performance tests described above, repeat these tests, point by point, as described in the validation log above in the presence of Owner's Representative, as required. Properly schedule these tests so testing is complete at a time directed by the Owner's Representative. Do not delay tests so as to prevent delay of occupancy permits or building occupancy.
- E. System Acceptance: Satisfactory completion is when this Contractor has performed successfully all the required testing to show performance compliance with the requirements of the Contract Documents to the satisfaction of the Owner's Representative. System acceptance shall be contingent upon completion and review of all corrected deficiencies.

3.07 PREPARATION FOR BALANCING

- A. Verify that all dampers are in the position indicated by the controller (e.g., open, closed or modulating).
- B. Check the calibration and setpoints of all controllers.
- C. Check the locations of all thermostats and humidistats for potential erratic operation from outside influences such as sunlight, drafts, or cold walls.
- D. Check that all sequences operate as specified. Verify that no simultaneous heating and cooling occurs, unless specified. Verify the operation of all interlock systems.

3.08 DEMONSTRATION AND ACCEPTANCE

A. At completion of installation, provide two days minimum instruction for operators. Demonstrate operation of all controls and systems. Describe the normal operation of all equipment.

3.09 TRAINING

- A. On-Site:
 - 1. After completion of commissioning, the manufacturer shall provide six (6) hours of training on consecutive days for two (2) Owner's representatives. The training course shall enable the Owner's representatives to perform Day-to-Day Operations as defined herein. A factory-trained instructor

DOC ASP LUA A/C REPLACEMENT Anamosa, IA

with experience in presenting the training material and the system programmer for this project shall perform the training.

B. Day-to-Day Operations - Training Description:

- 1. Proficiently operate the system.
- 2. Understand control system architecture and configuration.
- 3. Understand FMCS systems components.
- 4. Understand system operation, including FMCS system control and optimizing routines (algorithms).
- 5. Operate the workstation and peripherals.
- 6. Log-on and off the system.
- 7. Access graphics, point reports, and logs.
- 8. Adjust and change system setpoints, time schedules, and holiday schedules.
- 9. Recognize malfunctions of the system by observation of the printed copy and graphic visual signals.
- 10. Understand system drawings and Operation and Maintenance manual.
- 11. Understand the job layout and location of control components.
- 12. Access data from FMCS controllers and ASCs.
- 13. Operate portable operator's terminals.
- C. Provide course outline and materials in accordance with the "SUBMITTALS" article in Part 1 of this section. The instructor(s) shall provide one copy of training material per student.

3.10 INSTALLATION OF SENSORS

- A. Install sensors in accordance with the manufacturer's recommendations.
- B. Mount sensors rigidly and adequately for the environment within which the sensor operates.
- C. Room temperature sensors shall be installed on concealed junction boxes properly supported by the wall framing.
- D. All wires attached to sensors shall be air sealed in their raceways or in the wall to stop air transmitted from other areas affecting sensor readings.
- E. Averaging sensors and low limits shall be installed at the top of the assembly with the element on a slight downward incline away from the sensor making a serpentine pattern over the cross-sectional area with elements spaced not over 12" apart and within 6" of the top and bottom of the area.
- F. All pipe-mounted temperature sensors shall be installed in immersion wells. Install all liquid temperature sensors with heat-conducting fluid in thermal wells.

END OF SECTION

SECTION 23 0913 INSTRUMENTATION

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Pressure Gauge.
- B. Pressure Gauge Accessories.
- C. Thermometers.
- D. Test Plugs.
- E. Static and Differential Airflow Pressure Gauges.

1.02 SUBMITTALS

A. Submit shop drawings per Section 23 0500. Include list that indicates use, operating range, total range and location for manufactured components.

PART 2 - PRODUCTS

2.01 PRESSURE GAUGES

- A. Gauges shall be 4-1/2" diameter with aluminum or stainless steel case with phosphor bronze bourdon tube, brass socket for air, steam, water or oil application, 1/2" bottom connection. Gauges shall be 1% full scale accurate with bronze bushed brass movement and adjustable pointer. Standard ranges to be either pressure or pressure and vacuum as required of application.
- B. Manufacturers:
 - 1. Ashcroft
 - 2. Marsh
 - 3. Marshalltown
 - 4. Miljoco
 - 5. Trerice
 - 6. U.S. Gauge Figure 1901
 - 7. Weksler
 - 8. Wika.
- C. Select gauge range for normal reading near center of gauge.

2.02 PRESSURE GAUGE ACCESSORIES

- A. All pressure gauges shall have valves and pressure snubbers. Shutoff Valve: 1/2" ball valve as specified for each piping system.
- B. Pressure snubber, brass with 1/2" connections, porous metal type.
- C. All pressure gauge piping shall be minimum 1/2" 304 stainless steel pipe or copper tube.

2.03 THERMOMETERS

- A. Alcohol/Spirit Filled Type:
 - 1. 9" long phenolic case, steel stem, accuracy of 1% full scale. Adjustable elbow joint with 180 degree adjustment in vertical plane, 360 degree adjustment in horizontal plane, and locking device to allow rotation of thermometer to any angle.
 - 2. Select thermometer for appropriate temperature range.
 - 3. Stem: Copper plated steel, aluminum, or brass for separable socket. Stem lengths as required for application with minimum insertion of 3".
 - 4. Thermometers for water shall have brass or steel separable socket. Thermometer wells shall be stainless steel, pressure rated to match piping system design pressure; with 2 inch extension for insulated piping and threaded cap nut with chain permanently fastened to well and cap. Thermometers for air shall have an aluminum or brass duct flange.
 - 5. Manufacturer:
 - a. Marsh
 - b. Miljoco
 - c. Trerice
 - d. Weksler
 - e. Wika.
- B. Select scales to cover expected range of temperatures.

2.04 TEST PLUGS

- A. Test Plug: 1/4" or 1/2" brass fitting and cap, with Nordel core for temperatures up to 275°F, for receiving 1/8" outside diameter pressure or temperature probe. Plugs shall be rated for zero leakage from vacuum to 500 psi.
- B. Provide extended units for all plugs installed in insulated piping.

2.05 STATIC AND DIFFERENTIAL AIRFLOW PRESSURE GAUGES

- A. Diaphragm-activated gauge with 4-3/4" dial, cast aluminum case, sealed interior, designed to resist shock and vibration, and rated for 15 psig.
- B. Accuracy shall be \pm 3% of full scale maximum throughout entire range at 70°F.
- C. Provide mounting brackets, probes, and shutoff valves required for proper installation.
- D. The range and service shall be as required for application or as noted on the drawings.
- E. Manufacturers:
 - 1. Dwyer Magnehelic Series 2000
 - 2. Marshalltown Instrument Series 85C.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. General Installation Requirements:
 - 1. Install per manufacturer's instructions.
 - 2. Coil and conceal excess capillary on remote element instruments.
 - 3. Install gauges and thermometers in locations where they are easily read from normal operating level.
 - 4. Do not install instrumentation when areas are under construction, except for required rough-in, taps, supports and test plugs.
- B. Pressure Gauges:
 - 1. Connect pressure gauges to suction and discharge side of all pumps.
 - 2. Provide 1/2" tubing for pressure gauge and gauge accessories.
 - 3. Provide snubber for each pressure gauge.
 - 4. Install gauges with bottom threaded connections at 6 o'clock position.

C. Thermometers:

- 1. Install thermometers in piping systems in sockets in short couplings. Enlarge pipes smaller than 2-1/2" for installation of thermometer sockets.
- 2. Install thermometer sockets adjacent to control system thermostat, transmitter and sensor sockets.

END OF SECTION

SECTION 23 2100 HYDRONIC PIPING

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Pipe and Pipe Fittings
- B. Valves
- C. Check Valves
- D. Strainers
- E. System Piping Schedule

1.02 QUALITY ASSURANCE

- A. Valves: Manufacturer's name and pressure rating marked on valve body. Remanufactured valves are not acceptable.
- B. Welding Materials, Procedures, and Operators: Conform to ASME Section 9, ANSI/AWS D1.1, and applicable state labor regulations.
- C. All grooved couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be of the same manufacturer as the grooved components.
 - 1. All castings used for couplings housings, fittings, or valve and specialty bodies shall be date stamped for quality assurance and traceability.

1.03 SUBMITTALS

- A. Submit product data under provisions of Section 23 0500. Include data on pipe materials, fittings, valves, and accessories. Include manufacturers' support spacing requirements for plastic piping.
- B. Grooved joint couplings and fittings shall be referred to on drawings and product submittals, and be identified by the manufacturer's listed model or series designation.

1.04 DELIVERY, STORAGE, AND HANDLING

- A. Store and protect piping to prevent entrance of foreign matter into pipe and to prevent exterior corrosion.
- B. Deliver and store valves in shipping containers with labeling in place.

PART 2 - PRODUCTS

2.01 STEEL PIPE (ABOVE GRADE)

- A. Design Pressure 125 psig, Maximum Design Temperature 225°F (230°F for grooved couplings).
- B. Black Steel; Standard Weight; Threaded Joints:
 - 1. Pipe: Standard weight black steel, threaded and coupled, ASTM A53; Type E, F, or S; Grade B.
 - 2. Joints: Screwed.
 - 3. Fittings: Class 125 cast iron, ASTM A126, ASME B16.4; or Class 150 malleable iron, ASTM A197, ASME B16.3.
 - 4. Unions: Class 150 malleable iron, ANSI B16.39, ground joint with copper or copper alloy-to-iron seat.
- C. Black Steel; Standard Weight; Mechanical Press Connection:
 - 1. Pipe: Standard weight black steel, grooved ends, ASTM A53, Type E or S, Grade B.
 - 2. Joints: Mechanical press connection.
 - 3. Fittings: ASTM F3226 with O-ring gaskets as described below:
 - a. EPDM gaskets/sealing element for sizes through 2" in diameter.
 - b. FKM gaskets/sealing element for sizes through 4" in diameter.

DOC ASP LUA A/C REPLACEMENT Anamosa, IA

- 4. Fitting Identification: Press ends shall provide the ability to identify an unpressed fitting from the floor prior to testing. The function of this feature is to provide the installer quick and easy identification of connections that have not been pressed prior to putting the system into operation.
- 5. Special Requirements: Mechanical press fitting manufacturer shall provide contractor training prior to installation.
- 6. Manufacturers:
 - a. Viega MegaPress
 - b. NIBCO BenchPress
 - c. Merit Brass
 - d. Mueller Streamline

2.02 COPPER PIPE (ABOVE GRADE)

- A. Design Pressure 125 psig. Maximum Design Temperature 225°F.
- B. Copper Pipe; Type L; Soldered Joints:
 - 1. Tubing: Type L drawn temper seamless copper tube, ASTM B88.
 - 2. Joints: Solder with Type 95-5 solder. 50-50 solder is not acceptable.
 - 3. Fittings: Wrought copper solder joint, ASME B16.22.
- C. Copper Pipe; Type L; Mechanical Press Connection:
 - 1. Tubing: Type L hard drawn seamless copper tube, ASTM B88.
 - 2. Joints: Mechanical press connection.
 - 3. Fittings: Copper, ASME B-16.51, with embedded EPDM O-ring, NSF-61.
 - 4. Fitting Identification: Press ends shall provide the ability to identify an unpressed fitting from the floor prior to testing. The function of this feature is to provide the installer quick and easy identification of connections that have not been pressed prior to putting the system into operation.
 - 5. Special Requirements: Mechanical press fitting manufacturer shall provide contractor training prior to installation.
 - 6. Manufacturers:
 - a. Viega ProPress.
 - b. Elkhart Xpress.
 - c. NIBCO Press System Fittings and Valves.
 - d. Merit Brass
 - e. Mueller Streamline PRS.
- D. Copper; Type M; Mechanical Press Connection:
 - 1. Tubing: Type M (or thicker) drawn temper seamless copper tube, ASTM B88.
 - 2. Joints: Mechanical press connection.
 - 3. Fittings: Copper, ASME B-16.51, with embedded EPDM O-ring, NSF-61.
 - a. In sizes where drainage type fittings are not available, tees with threaded caps to permit rodding are acceptable.
 - 4. Limitations: Equipment drains and overflows only. No pressure pipes.
 - 5. Fitting Identification: Press ends shall provide the ability to identify an unpressed fitting from the floor prior to testing. The function of this feature is to provide the installer quick and easy identification of connections that have not been pressed prior to putting the system into operation.
 - 6. Special Requirements: Mechanical press fitting manufacturer shall provide contractor training prior to installation.

- 7. Manufacturers:
 - a. Viega ProPress
 - b. Elkhart Xpress
 - c. NIBCO Press System Fittings and Valves
 - d. Merit Brass
 - e. Mueller Streamline PRS

2.03 VALVES

- A. Shutoff Valves:
 - 1. For pipe systems where mechanical press connections are allowed, shutoff valves with mechanical press connections are acceptable subject to the requirements in the paragraphs below.
 - 2. Ball Valves:
 - a. BA-1 (Steel and Copper): 3" and under, 125 psi saturated steam, 600 psi WOG, full port, screwed or solder ends (acceptable only if rated for soldering in line with 470°F melting point of lead-free solder), bronze body of a copper alloy containing less than 15% zinc, stainless steel ball and trim, Teflon seats and seals.
 - 1) Body: Bronze of a copper alloy containing less than 15% zinc.
 - a) Manufacturers: Apollo #77C-140, Stockham #S-206 BR1-R, Milwaukee #BA-400, Watts, Nibco #585-70-66, National Utilities Co., RUB, Jomar T/S-200CSS.
 - 2) Body: Dezincification resistant brass alloy. Jomar T/S-100CSSG.
 - 3) Provide extended shaft with operating handle of non-thermal conductive material and protective sleeve that allows operation of valve, adjustment of the packing, and adjustment of the memory stop without breaking the vapor seal or disturbing the insulation for all valves in insulated piping. (For example, Jomar modifies valve part number with -IH for insulated handle.)
 - 4) Provide lock out trim for all valves opening to atmosphere installed in domestic water piping over 120°F, heating water piping over 120°F, steam, condensate, boiler feed water piping, compressed air piping and gasoline/kerosene piping, and as indicated on the drawings. Solid extended shaft is not required on valves with lock out trim. (For example, Jomar modifies valve part number with -LH for locking handle.)

2.04 LOCK OUT TRIM

A. Provide lock out trim for all quarter turn valves opening to atmosphere installed in heating water piping over 120°F and as indicated on the drawings.

2.05 CHECK VALVES

- A. For pipe systems where mechanical press connections are allowed, check valves with mechanical press connections are acceptable subject to the requirements in the paragraphs below.
- B. CK-1: Check Valves (Steel Pipe); 2" and under, 125 psi S @ 353°F, 200 psi WOG @ 150°F, screwed, bronze, horizontal swing.
 - 1. Manufacturers:
 - a. Crane #37
 - b. Hammond #IB904
 - c. Walworth #3406
 - d. Milwaukee #509
 - e. NIBCO #T-413
 - f. Jomar T-511G

- C. CK-4: Check Valves (Copper Pipe); 2" and under, 200 psi WOG @ 150°F, solder, bronze, horizontal swing.
 - 1. Manufacturers:
 - a. Crane #1342
 - b. Hammond #IB912
 - c. Walworth #406SJ
 - d. Milwaukee #1509
 - e. Watts #B-5001
 - f. NIBCO #S-413.

2.06 STRAINERS

- A. For pipe systems where mechanical press connections are allowed, strainers with mechanical press connections are acceptable subject to the requirements in the paragraphs below.
- B. ST-1: Bronze body, screwed ends, screwed cover, 125 psi S @ 353°F, 200 psi WOG @ 150°F
 - 1. Manufacturers:
 - a. Armstrong #F4SC
 - b. Metraflex #TS
 - c. Mueller Steam Specialty Co. #351
 - d. Sarco #BT
 - e. Watts #777
 - f. NIBCO T-221-A.
- C. ST-2: Cast iron body, 125 lb. flanged ends, bolted cover, 125 psi S @ 353°F, 175 psi WOG @ 150°F.
 - 1. Manufacturers:
 - a. Armstrong #A1FL
 - b. Metraflex #TF
 - c. Mueller Steam Specialty Co. #758
 - d. Sarco #CI-125
 - e. Watts #77F-D
 - f. Victaulic #732 or #W732
 - g. NIBCO F-721-A.
- D. Unless otherwise indicated, strainers shall be Y-pattern and have stainless steel screens with perforations as follows:
 - 1. Pipe Size:
 - a. 1/4" 2": 1/32" screen
- E. Furnish pipe nipple with ball valve, threaded hose connection, and cap to blow down all strainer screens.
- F. Use bronze body strainers in copper piping and iron body strainers in ferrous piping.

PART 3 - EXECUTION

3.01 PREPARATION

- A. Ream pipe and tube ends, remove burrs, bevel plain-end ferrous pipe.
- B. Remove scale and dirt on inside and outside before assembly.
- C. Remove all scale, rust, dirt, oils, stickers and thoroughly clean exterior of all bare metal exposed piping, hangers, and accessories in preparation to be painted.

DOC ASP LUA A/C REPLACEMENT Anamosa, IA

- D. Connect to all equipment with flanges or unions. Unions or flanges for servicing and disconnect are not required in installations using grooved joint couplings.
- E. Flush and clean piping as defined below. When system water is clear, remove, clean and replace all strainer screens (blowing down strainer without removing and cleaning screen is not acceptable).
- F. After completion, fill and clean systems.

3.02 SYSTEMS, PIPING, AND VALVE SCHEDULE

- A. Heating Water (Above Grade maximum 200°F unless noted otherwise below):
 - 1. Black Steel; Standard Weight; Threaded Joints: 2" and Under
 - 2. Black Steel; Standard Weight; Plain End Mechanical Coupled: 2" and Under
 - 3. Copper Pipe; Type L; Soldered Joints: 2" and Under
 - 4. Copper Pipe; Type L; Mechanical Press Connection: 4" and Under
 - 5. Black Steel; Standard Weight, Mechanical Press Connection: 4" and Under
 - 6. Shutoff Valves: , BA-1
 - 7. Check Valves: CK-1, CK-4
 - 8. Strainers: ST-1, ST-2
- B. Equipment Drains and Overflows:
 - 1. Copper; Type M; Mechanical Press Connection: 4" (200 mm) and Under

3.03 TESTING PIPING

- A. Test pipes in chases and walls before piping is concealed.
- B. Complete testing before insulation is applied. If insulation is applied before pipe is tested and a leak ruins the insulation, replace all damaged insulation.
- C. Test the pipe with water at 1.5 times the design pressure but not less than 125 psig pressure. Hold pressure for at least two hours.
- D. Test to be witnessed by the Engineer or their representative, if requested by the Engineer.

3.04 CLEANING PIPING

- A. Assembly:
 - 1. Prior to assembly of pipe and piping components, remove all loose dirt, scale, oil and other foreign matter on internal or external surfaces by means consistent with good piping practice subject to approval of the Engineer. Blow chips and burrs out of pipe before assembly. Wipe cutting oil from internal and external surfaces.
 - 2. During fabrication and assembly, remove slag and weld spatter from both internal and external joints by peening, chipping and wire brushing to the degree consistent with good piping practices.
 - 3. Notify the Engineer prior to starting any post erection cleaning operation in time to allow witnessing the operation. Properly dispose of cleaning and flushing fluids.
 - 4. Prior to blowing or flushing erected piping systems, disconnect all instrumentation and equipment, open wide all valves, control valves, and balance valves, and verify all strainer screens are in place.

3.05 INSTALLATION

- A. General Installation Requirements:
 - 1. Route piping in orderly manner, straight, plumb, with consistent pitch, parallel to building structure, with minimum use of offsets and couplings. Provide only offsets required for needed headroom or clearance and needed flexibility in pipe system.
 - 2. Install piping to conserve building space, and not interfere with other work.
 - 3. Group piping whenever practical at common elevations.

- 4. Install piping to allow for expansion and contraction without stressing pipe, joints, or connected equipment.
- 5. Reducers are generally not shown. Where pipe sizes change at tee, the tee shall be the size of the largest pipe shown connecting to it. Where pipe sizes are not shown, the larger size in either direction shall continue through the fitting nearest to the indication of a smaller pipe size.
- 6. Seal pipes passing through exterior walls with a wall seal per Section 23 0529. Provide Schedule 40 galvanized sleeve at least 2 pipe sizes larger than the pipe.
- 7. Branch takeoffs shall be from the top side (if branch is two sizes smaller than main), or any angle from the horizontal plane to the top of piping.
- B. Installation Requirements in Electrical Rooms:
 - 1. Do not install piping or other equipment above electrical switchboards or panelboards. This includes a dedicated space extending 25 feet from the floor to the structural ceiling with width and depth equal to the equipment plus its required clearance space.
- C. Valves/Fittings and Accessories:
 - 1. Provide clearance for installation of insulation, and access to valves and fittings.
 - 2. Prepare pipe, fittings, supports, and accessories for finish painting.
 - 3. Install valves with stems upright or horizontal, not inverted, except install manual quarter turn valves in radiation cabinets and all butterfly valves with stems horizontal.
 - 4. Provide shutoff valves and flanges or unions at all connections to equipment, traps, and items that require servicing.
 - 5. Provide flanges or unions at all final connections to equipment, traps and valves.
 - 6. Arrange piping and piping connections so equipment may be serviced or totally removed without disturbing piping beyond final connections and associated shutoff valves.
 - 7. Horizontal swing check valves may only be installed in horizontal position. Do not install horizontal swing check valves in upward or downward flow direction. Where upward or downward flow installation is required, use spring-assisted, non-slam check valve.

3.06 PIPE ERECTION AND LAYING

- A. Carefully inspect all pipe, fittings, valves, equipment and accessories prior to installation. Immediately reject and remove from the job any items which are unsuitable, cracked or otherwise defective.
- B. All pipe, fittings, valves, equipment and accessories shall have factory-applied markings, stampings, or nameplates sufficient to determine their conformance with specified requirements.
- C. Exercise care at every stage of storage, handling, laying and erecting to prevent entry of foreign matter into piping, fittings, valves, equipment and accessories. Do not erect or install any unclean item.
- D. During construction, until system is fully operational, keep all openings in piping and equipment closed at all times except when actual work is being performed on that item. Closures shall be plugs, caps, blind flanges or other items designed for this purpose.
- E. Change direction of pipes only with fittings or pipe bends. Change size only with fittings. Do not use miter fittings, face or flush bushings, or street elbows. 2-1/2" and larger fittings shall be long radius type, unless otherwise shown on the drawings or specified. Construct welded elbows of angles not available as standard fittings by cutting and welding standard elbows to form smooth, long radius fittings.
- F. Use full and double lengths of pipe wherever possible.
- G. Unless otherwise indicated, install all inlet and outlet piping, including shutoff valves and strainers, to coils, pumps and other equipment at line size with reduction in size being made only at control valve or pump.

- H. Cut all pipe to exact measurement and install without springing or forcing except in the case of expansion loops where cold springing is indicated on the drawings.
- I. Do not create, even temporarily, undue loads, forces or strains on valves, equipment or building elements.

3.07 DRAINING AND VENTING

- A. Unless otherwise indicated on the drawings, all horizontal pipes, including branches, shall pitch 1" in 40 feet to low points for complete drainage, removal of condensate, and venting.
- B. Provide drain valves at all low points of water piping systems or where indicated on drawings for complete or sectionalized draining. Drain valves are defined above.
- C. Use eccentric reducing fittings on horizontal runs when changing size for proper drainage and venting. Install all liquid lines with top of pipe and eccentric reducers in a continuous line.
- D. Provide air vents at all high points and wherever else required for elimination of air in all water piping systems. Do not use automatic air vents in glycol systems unless they are piped to the fill tank.
- E. Air vents shall be in accessible locations. If needed to trap and vent air in a remote location, a 1/8" pipe shall connect the tapping location to a venting device in an accessible location.
- F. All vent and drain piping shall be of same materials and construction as the service involved.

3.08 BRANCH CONNECTIONS

- A. Make branch connections with standard tee or cross fittings of the type required for the service unless otherwise specified herein or detailed on the drawings.
- B. At the option of the Contractor, branch connections from headers and mains may be cut into black steel pipe using forged weld-on fittings.
- C. Use of forged weld-on fittings is also limited as follows:
 - 1. Must have at least same pressure rating as the main.
 - 2. Header or main must be 2-1/2" or over.
 - 3. Branch line is at least two pipe sizes under header or main size.

3.09 JOINING OF PIPE

- A. Threaded Joints (Steel Pipe):
 - 1. Ream pipe ends and remove all burrs and chips.
 - 2. Protect plated pipe and valve bodies from wrench marks when making up joints.
 - 3. Apply Teflon tape to male threads.
 - B. **Flanged** Joints (Steel Pipe):
 - 1. Bronze flanges shall conform to B16.24 and ductile iron flanges to B16.42. Steel flanges shall be raised face except when bolted to flat face cast iron flange.
 - 2. Bolting shall be ASTM A307 Grade B with bolts and heavy hexagonal nuts conforming to ASME B18.2.1 and B18.2.2.
 - 3. Torque bolts in at least three passes, tightening to 1/3, 2/3, and final torque in a cross pattern with an indicating torque wrench for equal tension in all bolts.
 - 4. Gaskets for flat face flanges shall be full-face type. Gaskets for raised faced flanges shall conform to requirements for "Group I gaskets" in ASME B16.5. All gaskets shall conform to ASME B16.21. Unless otherwise specified, gaskets shall meet the following requirements:
 - a. Gasket material and thickness approved by manufacturer for intended service, chemical compatibility, pipe system test pressure, and operating temperature range.
 - b. Maximum pressure rating of at least 250 psig.

- c. Minimum temperature rating: -10°F.
- d. Maximum temperature rating of at least 250°F for water systems operating above 140°F and up to 180°F.
- C. Solder Joints (Copper Pipe):
 - Make up joints with 95% tin and 5% antimony (95-5) solder conforming to ASTM B32 Grade 95TA. Cut copper tubing ends perfectly square and remove all burrs inside and outside. Thoroughly clean sockets of fittings and ends of tubing to remove all oxide, dirt and grease just prior to soldering. Apply flux evenly, but sparingly, to all surfaces to be joined. Heat joints uniformly to proper soldering temperature so solder flows to all mated surfaces. Wipe excess solder, leaving a uniform fillet around cup of fitting.
 - 2. Flux shall be non-acid type conforming to ASTM B813.
 - 3. Solder end valves may be installed directly in the piping system if the entire valve is suitable for use with 470°F melting point solder. Remove composition discs and all seals during soldering if not suitable for 470°F.
- D. Mechanical Press Connection (Copper):
 - 1. Copper press fitting shall be made in accordance with the manufacturer's installation instructions.
 - 2. Fully insert tubing into the fitting and mark tubing.
 - 3. Prior to making connection, the fitting alignment shall be checked against the mark made on the tube to ensure the tubing is fully engaged in the fitting.
 - 4. Joint shall be pressed with a tool approved by the manufacturer. Installers shall be trained by manufacturer personnel or representative. Provide documentation upon request.
- E. Mechanical Press Connection (Steel):
 - 1. Steel press fitting shall be made in accordance with the manufacturer's installation instructions.
 - 2. Fully insert pipe into the fitting and mark pipe.
 - 3. Prior to making connection, the fitting alignment shall be checked against the mark made on the pipe to ensure the piping is fully engaged in the fitting.
 - 4. Joint shall be pressed with a tool approved by the manufacturer. Installers shall be trained by manufacturer personnel or representative. Provide documentation upon request.

END OF SECTION

SECTION 23 2116 HYDRONIC SPECIALTIES

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Manual Air Vents
- B. Balancing Valves
- C. Drain Valves and Blowdown Valves

1.02 QUALITY ASSURANCE

- A. Valves: Manufacturer's name and pressure rating marked on valve body. Remanufactured valves are not acceptable.
- B. Welding Materials, Procedures, and Operators: Conform to ASME Section 9, ANSI/AWS D1.1, and applicable state labor regulations.

1.03 SUBMITTALS

A. Submit product data under provisions of Section 23 0500. Include data on pipe materials, fittings, valves, and accessories. Include manufacturers' support spacing requirements for plastic piping.

1.04 DELIVERY, STORAGE, AND HANDLING

- A. Store and protect piping to prevent entrance of foreign matter into pipe and to prevent exterior corrosion.
- B. Deliver and store valves in shipping containers with labeling in place.

PART 2 - PRODUCTS

2.01 MANUAL AIR VENTS

- A. At end of main and other points where large volume of air may be trapped, use 1/4" globe valve, angle type, 125 psi, Crane #89, attached to coupling in top of main, 1/4" discharge pipe turned down with cap.
- B. On branch lines and small heating units, use coin-operated air vent equal to B&G #4V, attached to 1/8" coupling in top of pipe. Install air vents on all coils and terminal heating units.

2.02 BALANCING VALVE

- A. Rated for 125 psi working pressure and 250°F operating temperature, taps for determining flow with a portable meter, positive shutoff valves for each meter connection, memory feature, tight shutoff, and a permanent pressure drop between 1' and 2' water column at full flow with valve 100% open. Furnish with molded, removable insulation covers.
- B. Provide a nomograph to determine flow from meter reading (and valve position on units that sense pressure across a valve). Graph shall extend below the specified minimum flow.
- C. Valves in copper piping shall be brass or bronze.
 - 1. Quarter-Turn Venturi Style (Brass or Bronze):
 - a. Manufacturers:
 - 1) Presso "B+"
 - 2) Griswold "Quickset"
 - 3) Gerand "BALVALVE Venturi"
 - 4) HCI "Terminator B"
 - 5) Nexus Valve "UltraXB Orturi"
 - 6) IMI Hydronic Engineering "Accusetter"

DOC ASP LUA A/C REPLACEMENT Anamosa, IA

- D. Valves in ferrous piping 2" or smaller shall have threaded ends and steel, brass or bronze construction. Option to balancing valves noted above are flow sensors specified in Section 23 0900 with a specified throttling valve.
 - 1. Quarter-Turn Venturi Style (Ferrous Piping \leq 2"):
 - a. Manufacturers:
 - 1) Presso "B+"
 - 2) Gerand "BALVALVE Venturi"
 - 3) HCI "Terminator B"
 - 4) Nexus Valve "UltraXB Orturi"
 - 5) IMI Hydronic Engineering "Accusetter"
- E. Manufacturer shall size balancing valves for the scheduled flow rate. Flow rate shall be measurable on manufacturer's standard meters.

2.03 DRAIN VALVES AND BLOWDOWN VALVES

A. Drain valve and blowdown valve shall mean a shutoff valve as specified for the intended service with added 3/4" male hose thread outlet, cap, and retaining chain.

2.04 CONNECTIONS BETWEEN DISSIMILAR METALS

- A. Connections between dissimilar metals shall be insulating dielectric types that provide a water gap between the connected metals, and that either allow no metal path for electron transfer or that provide a wide water gap lined with a non-conductive material to impede electron transfer through the water path.
- B. Joints shall be rated for the temperature, pressure, and other characteristics of the service in which they are used, including testing procedure.
- C. Aluminum, iron, steel, brass, copper, bronze, galvanized steel, and stainless steel are commonly used and require isolation from each other with the following exceptions:
 - 1. Iron and steel connected to each other.
 - 2. Brass, copper, and bronze connected to each other.
 - 3. Brass or bronze valves and specialties connected in closed systems with steel, iron, or stainless steel on both sides of the brass or bronze valves and specialties. Where two or more brass or bronze items occur together, they shall be connected with brass nipples. Brass or bronze valves and specialties cannot be used as a dielectric separation between pipe materials.
- D. Dielectric protection is required at connections to equipment of a material different than the piping.
- E. Screwed Joints (acceptable up to 2" size):
 - 1. Dielectric waterway rated for 300 psi CWP and 225°F.
 - 2. Manufacturers:
 - a. Elster Group ClearFlow fittings
 - b. Victaulic Series 647
 - c. Grinnell Series 407
 - d. Matco-Norca
- F. Flanged Joints (any size):
 - 1. Use 1/8" minimum thickness, non-conductive, full-face gaskets.
 - 2. Employ one-piece molded sleeve-washer combinations to break the electrical path through the bolts.
 - 3. Sleeve-washers are required on one side only, with sleeves minimum 1/32" thick and washers minimum 1/8" thick.
 - 4. Install steel washers on both sides of flanges to prevent damage to the sleeve-washer.

- 5. Separate sleeves and washers may be used only if the sleeves are manufactured to exact lengths and installed carefully so the sleeves must extend partially past each steel washer when tightened.
- 6. Manufacturers:
 - a. EPCO
 - b. Central Plastics
 - c. Pipeline Seal and Insulator
 - d. F.H. Maloney
 - e. Calpico

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Valves/Fittings and Accessories:
 - 1. Where a manual balance valve is shown to be installed in series with a service (isolation) valve, separate balance and service (isolation) valves shall be installed.
 - 2. Install balancing valves with the manufacturer's recommended straight upstream and downstream diameters of pipe.
 - 3. Prepare accessories for finish painting.
 - 4. Install accessories with stems upright or horizontal, not inverted, except install manual quarter turn valves in radiation cabinets and all butterfly valves with stems horizontal.
 - 5. Provide shutoff valves and flanges or unions at all connections to equipment, traps, and items that require servicing.
 - 6. Provide flanges or unions at all final connections to equipment, traps and valves.
 - 7. Arrange piping and piping connections so equipment may be serviced or totally removed without disturbing piping beyond final connections and associated shutoff valves.

END OF SECTION

SECTION 23 2123 HVAC PUMPS

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. All pumps except where integral with a manufactured piece of equipment.
- B. Pump controls where self-contained.

1.02 SUBMITTALS

- A. Submit shop drawings under provisions of Section 23 0500.
- B. Submit certified pump performance curves with pump and system operating point plotted. Include NPSH curve when applicable.
- C. Submit motor data indicating compliance with Section 23 0513.

PART 2 - PRODUCTS

2.01 PUMPS - GENERAL

- A. Statically and dynamically balance rotating parts.
- B. Construction shall permit complete servicing without breaking piping or motor connections.
- C. Pumps shall operate at 1750 RPM unless specified otherwise.
- D. Pump connections shall be flanged, whenever available.
- E. Heating pumps shall be suitable for 225°F water.
- F. Motors shall comply with Section 23 0513 including, but not limited to:
 - 1. Single phase motors less than 1 HP shall be electronically commutated or shall have a minimum motor efficiency of 70%.
- G. Pump impellers shall not have smaller diameters than those scheduled. The inlet and discharge pipe sizes shall also meet or exceed the scheduled pump.
- H. Pumps specified in this section operating in clean water with a flow greater than 25 GPM and less than 459 feet head shall have a maximum Pump Energy Index (PEI) as scheduled on the drawings. In no case shall the PEI exceed 1.0.

2.02 IN-LINE PUMP

- A. Type: Centrifugal, single stage, close coupled in-line, back pullout design, suitable for horizontal or vertical operation.
- B. Casing: Cast iron, rated for greater of 125 psi or 1.5 times actual working discharge pressure, flanged suction and discharge with gauge ports.
- C. Impeller: Bronze or stainless steel, fully enclosed, dynamically balanced, keyed to shaft and secured with locknut.
- D. Shaft: Steel or stainless steel.
- E. Seals: Mechanical type rated for -20 to 250°F with EPR or EPT bellows and seat gasket, carbon primary ring, and silicon-carbide stationary ring.

F. Manufacturers:

- 1. Bell & Gossett
- 2. Taco
- 3. Aurora
- 4. Armstrong
- 5. Grundfos/Peerless/PACO

- 6. Patterson
- 7. Weinman/Crane

PART 3 - EXECUTION

3.01 INSTALLATION

- A. General Installation Requirements:
 - 1. Install all products per manufacturer's recommendations.
 - 2. Support piping adjacent to pumps so that no weight is carried by pump casings. Ensure pumps operate at specified fluid temperatures without vapor binding or cavitation, are non-overloading in parallel or individual operation, and operate within 25% of midpoint of published maximum efficiency curve.
 - 3. Install on vibration isolators as scheduled on drawings and specifications.
 - 4. Where electronically commutated motors are equipped with manual speed adjustment, pump speed shall be adjusted during the testing, adjusting, and balancing phase to achieve scheduled performance.
- B. In-Line Pumps:
 - 1. Support in-line pumps individually so there is no strain on the piping. Install with a minimum of five diameters of straight pipe on pump suction and discharge.
 - 2. Pump orientation shall be in accordance with the manufacturer's recommendations.

END OF SECTION

SECTION 23 2300

REFRIGERATION PIPING AND SPECIALTIES

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Piping and Pipe Fittings
- B. Moisture and Liquid Indicators
- C. Check Valves
- D. Filter-Driers
- E. Suction Filters
- F. Solenoid Valves
- G. Expansion Valves

1.02 QUALITY ASSURANCE

A. Remanufactured specialties are <u>not</u> acceptable.

1.03 SUBMITTALS

- A. Submit shop drawings under provisions of Section 23 0500.
- B. Submit layout of entire piping system including equipment, critical dimensions, and all pipe sizes, traps, valves, and accessories. Layout shall be a custom drawing for this job, not a standard detail. The refrigeration equipment supplier shall stamp the approval on layout drawings.
- C. Submit product data for specialties, including manufacturers catalog information.
- D. Submit manufacturer's installation instructions.

1.04 DELIVERY, STORAGE, AND HANDLING

- A. Deliver and store piping and specialties in shipping containers with labels in place.
- B. Protect piping and specialties from entry of foreign material by leaving caps and plugs in place until installation.

PART 2 - PRODUCTS

2.01 PIPING

- A. Design Pressure: 450 psig.
 - 1. Maximum Design Temperature: 250°F.
- B. Piping 4" and under; Brazed Joint:
 - 1. Tubing: Type ACR hard drawn seamless copper tube, ASTM B280. Sizes indicated are nominal designation.
 - 2. Joints: Brazed with silver solder.
 - 3. Fittings: Wrought copper solder joint, ANSI B16.22.
 - 4. Special Requirements: All tubing shall be cleaned, dehydrated, pressurized with dry nitrogen, plugged and tagged by manufacturer "for refrigeration service". During brazing operations, continuously purge the interior of the pipe with nitrogen to prevent oxide formation.
- C. Piping 1-3/8" and Under; Dual Concentric Crimp Mechanical Press Connection (Contractor's Option):
 - 1. Tubing: Type ACR hard drawn seamless copper tube, ASTM B280. Sizes indicated are nominal designation.
 - 2. Joints: Dual concentric crimp band mechanical press connection.
 - 3. Fittings: Refrigerant Grade Copper in accordance with ASTM B75 or ASTM B743 with embedded HNBR O-ring.

- 4. Manufacturers:
 - a. Rapid Locking System (RLS)
 - b. Conex Banninger
 - c. Parker Hannifin
 - d. MaxiPro ACR
 - e. Nibco ACR Press
- D. Piping 1-3/8" and Under; Mechanically Attached, Axially Swaged Compression Connection (Contractor's Option):
 - 1. Tubing: Type ACR hard drawn seamless copper tube, ASTM B280. Sizes indicated are nominal designation.
 - 2. Joints: Mechanically attached connector, axially swaged compression connection.
 - 3. Fittings: Refrigerant grade copper in accordance with ASTM B75 or ASTM B743. Brass body with two stabilization inserts in accordance with ASTM B15/B16M. Two steel rings in accordance with ASTM A108-13; anerobic adhesive sealant.
 - 4. Manufacturers:
 - a. VULKAN Lokring

2.02 MOISTURE AND LIQUID INDICATORS

- A. UL listed, with copper, brass, or copper-plated steel body, flared or solder ends, extended fittings in units up to at least 1-1/8" to allow brazing without removing the cartridge, sight glass, color coded paper moisture indicator that is replaceable without breaking piping connections for units up to 1-1/8" size, and plastic cap; maximum working pressure of 500 psi, and maximum temperature of 200°F.
 - 1. Manufacturers:
 - a. Sporlan
 - b. Henry Valve Company
 - c. Alco Valve

2.03 VALVES

- A. BA-14: Refrigerant Ball Valve: 3/8" thru 3-1/8", 500 psi, -40°F to +300°F, full-port up to 2-1/8" size, blowout proof, PTFE seals, brass ball with equalizing orifice, visible position indication, seal cap, extended copper connections, replaceable stem seals, compatible with all CFC, HCFC, and HFC refrigerants.
 - 1. Manufacturers:
 - a. Henry Valve Company
 - b. Superior Valve
 - c. Alco Valve

2.04 CHECK VALVES

- A. CK-10: 1/4" thru 3-5/8", 500 psi, globe or angle pattern, brazed, brass body, cleaned-dried-plugged and tagged at factory for refrigerant service.
 - 1. Manufacturers:
 - a. Henry Valve Company
 - b. Mueller
 - c. Wolf-Linde

2.05 FILTER-DRIERS

- A. Replaceable Cartridge Angle Type: ANSI/AHRI 710, UL listed, brass or epoxy-coated steel shell, molded desiccant high-water capacity filter core(s); maximum working pressure of 500 psi; maximum temperature of 275°F; maximum pressure drop of 1.5 psi at system flow rate.
- B. Permanent Straight Thru Type: ANSI/AHRI 710, UL listed, steel shell with molded desiccant filter core, maximum working pressure of 500 psi, maximum pressure drop of 1.5 psi at system flow rate.

2.06 SUCTION FILTERS

A. Replaceable Cartridge Angle Type: UL listed for 500 psi up to 2-18" size, and 400 psi for larger sizes, steel shell that passes 1000-hour salt spray test with copper fittings, replaceable pleated filter element(s); maximum pressure drops of 2 psi at system flow rate, capable of accepting molded desiccant core for cleanup after compressor burnout, access valve in the removable end plate. Install with side refrigerant inlet.

2.07 SOLENOID VALVES

- A. Valve: AHRI 760; pilot operated; copper or brass body and internal parts; synthetic seat; stainless steel stem and plunger assembly; extended solder ends to permit installation without disassembly; maximum working pressure of 500 psi; normally closed. Maximum pressure drop at system flow of 5 psi 3 psi.
- B. Coil Assembly: UL listed, replaceable with molded electromagnetic coil, moisture and fungus proof, surge protector and color-coded lead wires, integral junction box, Class F temperature rated, ANSI/UL 429.

2.08 EXPANSION VALVES

- A. Angle or Straight Thru Type: ANSI/AHRI 750; materials suitable for system refrigerant, external equalizer, adjustable super heat setting, balanced port design, suitable for horizontal or vertical installation, with replaceable capillary tube and remote sensing bulb.
- B. Selection: Evaluate refrigerant pressure drop through system to determine available pressure drop across valve. Select valve for maximum load at design operating pressure and minimum 10°F super heat. Select to avoid being undersized at full load or excessively oversized at part load.

PART 3 - EXECUTION

3.01 PREPARATION

- A. Ream pipe and tube ends. Remove burrs.
- B. Remove scale and dirt on inside and outside before assembly.
- C. Remove all scale, rust, dirt, oils, stickers and thoroughly clean exterior of all bare metal exposed piping, hangers, and accessories in preparation to be painted.

3.02 INSTALLATION

- A. Install specialties in accordance with manufacturer's instructions.
- B. Reducers are generally not shown. Where pipe sizes change at tee, the tee shall be the size of the largest pipe shown connecting to it.
- C. Route piping in orderly manner, parallel to building structure, and maintain gradient.
- D. Install piping to conserve building space and not interfere with use of space.
- E. Do not install piping or other equipment above electrical switchboards or panelboards. This includes a dedicated space extending 25 feet from the floor to the structural ceiling with width and depth equal to the equipment.
- F. Group piping whenever practical at common elevations and locations. Slope piping 1% in direction of oil return.
- G. Install piping to allow for expansion and contraction without stressing pipe, joints, or connected equipment.
- H. Provide clearance for installation of insulation and access to valves and fittings.
- I. Provide access doors for concealed valves and specialties.

- J. Where pipe support members are welded to structural building frame, brush clean, and apply zinc rich primer to welding.
- K. Insulate piping per Section 23 0719.
- L. Provide external equalizer piping on expansion valves, and locate expansion valve sensing bulb immediately downstream of evaporator on suction line. Connect distributor to expansion valve outlet.
- M. Install flexible connectors parallel to the shafts of compressors.
- N. Fully charge system with refrigerant after testing.

3.03 PIPE ERECTION AND LAYING

- A. Carefully inspect all pipe, fittings, valves, equipment and accessories before installation. Any items that are unsuitable, cracked or otherwise defective shall be rejected and removed from the job immediately.
- B. All pipe, fittings, valves, equipment and accessories shall have factory applied identification sufficient to determine their conformance with specified requirements.
- C. Exercise care at all times to prevent entry of foreign matter into piping, fittings, valves, equipment and accessories. Do not erect or install any item that is not clean.
- D. During construction, until system is fully operational, keep all openings in piping and equipment closed except when actual work is being performed on that item or system. Closures shall be plugs, caps, blind flanges or other items designed for this purpose.
- E. Change direction of pipes only with fittings or pipe bends. Change size only with fittings.
- F. Cut all pipe to exact measurement and install without springing or forcing.

3.04 APPLICATION

- A. Provide solenoid valves in liquid lines of systems, in oil bleeder lines to stop flow of oil and refrigerant into the suction line when system shuts down, and in hot gas bypass lines, as applicable.
- B. Provide refrigerant charging valve connections.
- C. Provide replaceable cartridge filter-driers, with three-valve bypass assembly and suction filters without bypass assembly.

3.05 JOINING OF PIPE

- A. Brazed Joints:
 - Make up joints with brazing filler metal conforming to ANSI/AWS A5.8. Cut copper tubing ends perfectly square and remove all burrs inside and outside. Thoroughly clean sockets of fittings and ends of tubing to remove all oxide, dirt, and grease just prior to brazing. Apply flux evenly, but sparingly, to all surfaces to be joined. Brazing filler metal with a flux coating may also be used. Heat joints uniformly to proper brazing temperature so braze filler metal flows to all mated surfaces. Wipe excess braze filler metal, leaving a uniform fillet around cup of fitting.
 - 2. Flux shall conform to ANSI/AWS A5.31.
 - 3. Remove composition discs and all seals during brazing if not suitable for a minimum of 840°F or greater than the melting temperature of the brazing filler metal, whichever is greater.
- B. Mechanical Press Connection:
 - 1. Copper press fitting shall be made in accordance with the manufacturer's installation instructions.
 - 2. Examination: Upon delivery to the jobsite, examine copper tubing and fittings for debris, defects, incise marks (manufacturer's engraving on tube), holes, or cracks.
 - 3. Fully insert tubing into the fitting and mark tubing.
 - 4. Prior to making connection, the fitting alignment shall be checked against the mark made on the tube to ensure the tubing is fully engaged in the fitting.
 - 5. Joint shall be pressed with a tool approved by the manufacturer.
 - 6. Installers shall be trained by manufacturer personnel or representative. Provide documentation upon request.
C. Axially Swaged Connection:

- 1. Brass axially swaged connectors shall be installed in accordance with the manufacturer's installation instructions.
- 2. Installers shall be trained by a certified Vulkan LOKRING trainer. Provide proof of certification upon request.

3.06 FIELD QUALITY CONTROL

- A. Test piping system with nitrogen at 300 psig for at least 8 hours without loss of pressure.
- B. Comply with ASHRAE Standard 147 for refrigerant system integrity testing.
- C. After pressure testing, evacuate all refrigerant piping to at least 28" of mercury for 24 hours without loss of vacuum. Ensure moisture does not enter the piping prior to and during the tests.

SECTION 23 3100 DUCTWORK

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Galvanized Ductwork
- B. Ductwork Reinforcement
- C. Ductwork Sealants
- D. Rectangular Ductwork
- E. Leakage Testing
- F. Ductwork Penetrations

1.02 DEFINITIONS

- A. Duct Sizes shown on drawings are inside clear dimensions. Maintain clear dimensions inside any lining.
- B. Transitions are generally not shown in single-line ductwork. Where sizes change at a divided flow fitting, the larger size shall continue through the fitting.
- C. Exterior Duct: Ductwork located outside the conditioned envelope including exposed ductwork above the roof, outside exterior walls, in attics above insulated ceilings, inside parking garages, and crawl spaces.
- D. Interior Duct: Ductwork located within the conditioned envelope including return air plenums and indirectly conditioned spaces.

PART 2 - PRODUCTS

2.01 GENERAL REQUIREMENTS AND SUPPORTS

- A. Rectangular Duct Single Wall:
 - 1. General Requirements:
 - a. All ductwork gauges and reinforcements shall be as listed in SMACNA Duct Construction Standards Chapter 2. Where necessary to fit in confined spaces, furnish heaviest duct gauge and least space consuming reinforcement.
 - b. Transitions shall not exceed the angles in Figure 4-7.
 - 2. Exceptions and modifications to the 2005 HVAC Duct Construction Standards are:
 - a. All ducts shall be cross-broken or beaded.
 - b. Snap lock seams are not permitted.
 - c. Turning vanes shall be used in all 90° mitered elbows, unless clearly noted otherwise on the drawings. Vanes shall be as follows:
 - 1) Type 1:
 - a) Description: Single wall type with 22-gauge (0.029") or heavier vanes, 3-1/4" blade spacing, and 4" to 4-1/2" radius. Vanes hemmed if recommended by runner manufacturer. Runners shall have extra-long locking tabs. C-value independently tested at below 0.26. EZ Rail II by Sheet Metal Connectors or equal.
 - b) Usage: Limited to 3,000 fpm and vane lengths 36" and under.
 - 2) Type 2:
 - a) Description: Double wall type with 3-1/4" blade spacing, 4-1/2" radius, 24-gauge minimum, and SMACNA Type 1 runners. C-value below 0.27.
 - b) Usage: No limits other than imposed by the manufacturer. Provide intermediate support for vanes over 48" long.

- 3) Type 3 (acoustical where acoustical lagging is located or as noted on drawings):
 - a) Description: Same as Type 2, except filled with fiberglass and with slotted or perforated inner curve. Minimum insertion loss of 9 dB at 250 Hz and 6 dB at 1 KHz.
 - b) Usage: No limits other than imposed by the manufacturer. Provide intermediate support for vanes over 48" long.
- 4) Turning vanes shall operate quietly. Repair or replace vanes that rattle or flutter.
- 5) Runners must be installed at a 45° angle. Elbows with different size inlet and outlet must be radius type.
- 6) Omitting every other vane is prohibited.
- d. Where smooth radius rectangular elbows are shown, they shall be constructed per SMACNA Figure 4-2. Type RE1 shall be constructed with a centerline duct radius R/W of 1.0. Where shown on drawings, Type RE3 elbows with 3 vanes shall be used with centerline duct radius R/W of 0.6 (SMACNA r/W=0.1). RE1 or RE3 elbows may be used where mitered elbows are shown if space permits. Mitered elbows (with or without turning vanes) may not be substituted for radius elbows. Do not make branch takeoffs within 4 duct diameters on the side of the duct downstream from the inside radius of radius elbows.
- e. Rectangular branch and tee connections in ducts over 1" pressure class shall be 45° entry type per Figs. 4-5 and 4-6. Rectangular straight taps are not acceptable above 1" pressure class.
- f. Round taps off rectangular unlined ducts shall be flanged conical or bellmouth type (equal to Buckley Bellmouth or Sheet Metal Connectors E-Z Tap), or 45° rectangular with transition to round (equal to Sheet Metal Connectors Inc. High Efficiency Takeoff). Straight taps are acceptable if pressure class is 1" or less, round duct is 12" diameter or less, and the tap is not located between fans and TAB devices.
- g. Duct offsets shall be constructed as shown on drawings. Additional offsets required in the field shall be formed of mitered elbows without turning vanes for offsets up to 30° maximum angle in accordance with SMACNA offset Type 2. Offsets of greater than 30° angle shall be formed of radius elbows with centerline radius R/W=1.0 or greater. SMACNA Type 1 offsets are not permitted.
- h. All lined duct shall utilize dovetail joints where round or conical taps occur. The dovetail joints shall extend past the liner before being folded over.
- i. Cushion heads are acceptable only downstream of TAB devices in ducts up to ± 2" pressure class, and must be less than 6" in length.
- j. Slide-on flanged transverse joint systems are acceptable provided they are a manufactured product that has been tested for conformance with Chapter 2 of the SMACNA HVAC Duct Construction Standards for sheet and joint deflection at the specified pressure class.
 - 1) Apply sealant to all inside corners. Holes at corners are not acceptable.
 - 2) Manufacturers:
 - a) Ductmate Industries 25/35/45
 - b) Nexus
 - c) Mez
 - d) WDCI
 - e) Other manufacturers must submit test data and fabrication standards and receive Engineer's approval before any fabrication begins.

- Formed-on flanged transverse joint systems are acceptable provided they are a manufactured product that has been tested for conformance with Chapter 2 of the SMACNA HVAC Duct Construction Standards for sheet and joint deflection at the specified pressure class.
 - 1) Apply sealant to all inside corners. Holes at corners are not acceptable.
 - 2) Flanges shall be 24-gauge minimum (not 26 gauge).
 - 3) Manufacturers:
 - a) Lockformer TDC
 - b) TDF
 - c) United McGill
 - d) Sheet Metal Connectors
 - e) Other manufacturers must submit test data and fabrication standards and receive Engineer's approval before any fabrication begins.
- B. Round and Flat Oval Spiral Seam Ductwork Single Wall:
 - 1. Conform to applicable portions of Rectangular Duct Section. Round or flat oval ductwork may be substituted for rectangular ductwork where approved by the Engineer. The spiral seam ductwork shall meet the standards set forth in this specification. The ductwork shall meet or exceed the specified cross-sectional area and insulation requirements. The substitution shall be coordinated with all other trades prior to installation.
 - 2. Flat oval duct in negative pressure applications shall have flat sides reinforced as required for rectangular ducts of the same gauge with dimensions equal to the flat span of the oval duct.
 - 3. 90° elbows shall be smooth radius or have a minimum of five sections with mitered joints and R/D of at least 1.5.
 - 4. Duct and fittings shall meet the required minimum gauges listed in chapter 3 of the SMACNA requirements for the specified pressure class. Ribbed and lightweight duct are not permitted.
 - 5. Ductwork shall be suitable for velocities up to 5,000 fpm.
 - 6. Divided flow fittings may be made as separate fittings or factory installed taps with sound, airtight, continuous welds at intersection of fitting body and tap.
 - 7. Spot weld and bond all fitting seams in the pressure shell. Coat galvanizing damaged by welding with corrosion resistant paint to match galvanized duct color.
 - 8. Ducts with minor axis less than 22" shall be spiral seam type. Larger ducts may be rolled, longitudinal welded seam type. SMACNA seams RL-2 and RL-3 are not permitted.
 - 9. Reinforce flat oval ducts with external angles. Internal tie rods are permitted only as indicated for rectangular ductwork.
 - 10. Transverse Joint Connections:
 - a. Crimped joints are not permitted.
 - b. Ducts and fittings 36" in diameter and smaller shall have slip joint connections. Size fitting ends to slip inside mating duct sections with minimum 2-inch insertion length and a stop bead. Use inside slip couplings for duct-to-duct joints, and outside slip couplings for fitting-to-fitting joints.
 - c. Ducts and fittings larger than 36" shall have flanged connections.
 - d. Secure all joints with at least 3 sheet metal screws before sealing.
 - e. Manufacturers, Slide-on Flanges:
 - 1) Ductmate Industries SpiralMate
 - 2) Accuflange
 - 3) Sheet Metal Connectors are acceptable.

- f. Manufacturers, Self-Sealing Duct Systems:
 - 1) Lindab
 - 2) Ward "Keating Coupling"
- C. Hangers and Supports General Requirements:
 - 1. Hanger and support materials shall be as defined within Materials and Application Specific section below.
 - 2. Strap Hangers: Strap hanger shall be a minimum of 1 inch, 18 gauge attached to the bottom of ducts with spacing as required by SMACNA.
 - 3. Cable Hangers:
 - a. Aircraft cable and slip cable hangers are acceptable for ducts up to 18" diameter. Protective sleeve tubing shall be used on the cable when supporting duct with exterior insulation. Corner saddles are required when supporting rectangular ductwork.
 - b. Manufacturers; Supports:
 - 1) Gripple
 - 2) Ductmate
 - 3) Duro Dyne
 - 4) Engineer approved
 - 4. Integral Corner Connector Hanger: Integral hanger and corner assembly for use with TDC/TDF style duct flanges. Die stamped offset hanger connects to the flanged corner assembly. For use with aircraft cable or 1/4" or 3/8" diameter threaded rods. Tested to hold up to 1,400 lbs. Install per manufacturer's ratings and instructions.
 - a. Manufacturers; Supports:
 - 1) EZ Hanger

2.02 MATERIAL AND APPLICATION SPECIFIC

- A. Galvanized Steel:
 - 1. General Requirements:
 - a. Duct and reinforcement materials shall conform to ASTM A653 and A924.
 - b. Interior Ductwork and reinforcements: G60 galvanized (0.60 ounces per square foot total zinc coating for two sides per ASTM A90) unless noted otherwise.
 - c. Ductwork reinforcement shall be of galvanized steel.
 - 2. Duct Hangers and Support Material:
 - a. Ductwork hangers and supports shall be of galvanized or painted steel.
 - b. All fasteners shall be galvanized or cadmium plated.
- B. Duct Hangers and Support Material:
 - 1. Ductwork hangers and supports shall be of galvanized or painted steel.
 - 2. All fasteners shall be galvanized or cadmium plated.

2.03 DUCTWORK REINFORCEMENT

- A. All reinforcement shall be external to the duct except that tie rods may be used with the following limitations.
 - 1. Ducts must be over 18" wide.
 - 2. Duct dimensions must be increased 2" in one dimension (h or w) for each row of tie rods installed.
 - 3. Tie rods must not exceed 1/2" diameter.
 - 4. Manufacturer of tie rod system must certify pressure classifications of various arrangements, and this must be in the shop drawings.

2.04 DUCTWORK SEALANTS

A. One-part joint sealers shall be water-based mastic systems that meet the following requirements: maximum 48-hour cure time, service temperature of -20°F to +175°F, resistant to mold, mildew and water, flame spread rating below 25 and smoke-developed rating below 50 when tested in accordance with ASTM E84, suitable for all SMACNA seal classes and pressure classes. Mastic used to seal flexible ductwork shall be marked UL 181B-M.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Provide openings in ducts for thermometers and controllers.
- B. Locate ducts with space around equipment for normal operation and maintenance.
- C. Do not install ducts or other equipment above electrical switchboards or panelboards. This includes a dedicated space extending 25 feet from the floor to the structural ceiling with width and depth equal to the electrical equipment. Unless intended to serve these rooms, do not install any ductwork or equipment in electrical rooms, transformer rooms, electrical closets, telephone rooms or elevator machine rooms.
- D. Provide temporary closures of metal or taped polyethylene on open ducts to prevent dust from entering ductwork.
- E. Supply ductwork shall be free of construction debris, and shall comply with Level "B" of the SMACNA Duct Cleanliness for New Construction Guidelines.
- F. Repair all duct insulation and liner tears.
- G. Install manual volume dampers in branch supply ducts so all outlets can be adjusted. Do not install dampers at air terminal device or in outlets, unless specifically shown.
- H. Support all duct systems in accordance with the SMACNA HVAC Duct Construction Standards: Metal and Flexible and the SMACNA Seismic Restraint Manual: Guidelines for Mechanical Systems, where applicable. Refer to Section 23 0550 for seismic requirements.
- I. Adhesives, sealants, tapes, vapor retarders, films, and other supplementary materials added to ducts, plenums, housing panels, silencers, etc. shall have flame spread/smoke developed ratings of under 25/50 per ASTM E84, NFPA 255, or UL 723.
- J. All duct support shall extend directly to building structure. Do not support ductwork from pipe hangers unless coordinated with piping contractor prior to installation. Do not allow lighting or ceiling supports to be hung from ductwork or ductwork supports.

3.02 DUCTWORK APPLICATION SCHEDULE

A. Refer to Ductwork Application Schedule on drawings for specific requirements for system, material, shape, pressure class, seal class and insulation application.

3.03 SPECIAL INSULATION REQUIREMENTS

- A. Ductwork Accessories (Fabric Flex Connectors, Equipment Flanges, etc.):
 - 1. Insulation:
 - a. IECC-2021: 1-1/2" thick Type A (R=4.5)

3.04 DUCTWORK SEALING

- A. General Requirements:
 - 1. Openings, such as rotating shafts, shall be sealed with bushings or similar.
 - 2. Pressure sensitive tape shall not be used as the primary sealant unless it has been certified to comply with UL-181A or UL-181B by an independent testing laboratory and the tape is used in accordance with that certification.
 - 3. All connections shall be sealed including, but not limited to, taps, other branch connections, access doors, access panels, and duct connections to equipment. Sealing that would void product listings is not required. Spiral lock seams need not be sealed.

- 4. Mastic-based duct sealants shall be applied to joints and seams in minimum 3 inch wide by 20 mil thick bands using brush, putty knife, trowel, or spray, unless manufacturer's data sheet specifies other application methods or requirements.
- B. All ducts systems, regardless of pressure class, shall be Seal Class A as defined by Section 5-1 of SMACNA HVAC Air Duct Leakage Test Manual per the Energy Code, unless specifically noted otherwise. Seal Class A shall include sealing of all transverse joints, longitudinal seams, and duct wall penetrations with welds, gaskets, mastics, or fabric-embedded mastic system. Joints are inclusive of, but not limited to, girth joints, branch and sub-branch intersections, duct collar tap-ins, fitting subsections, louver and air terminal connections to ducts, access door and access panel frames and jambs, duct, plenum, and casing abutments to building structures.

3.05 TESTING

- A. Interior Duct Less than 3" WG (positive or negative):
 - 1. Leak testing of these pressure classes is not normally required for interior ductwork (inside the building envelope). However, leak tests will be required if, in the opinion of the Engineer, the leakage appears excessive. All exterior ductwork shall be tested. If duct has outside wrap, testing shall be done before it is applied.
 - 2. Leak test shall be at the Contractor's expense and shall require capping and sealing all openings.
 - 3. Seal ducts to bring the air leakage into compliance.
 - 4. Contractor shall notify the Engineer five business days prior to pressurizing ductwork for testing.
- B. Interior Duct 3" WG and Above (positive or negative):
 - 1. A minimum of 25% of interior ductwork (inside the building envelope) shall be tested. The Owner or designated representative shall select the sections to be tested. If duct has outside wrap, testing shall be done before it is applied.
 - 2. Leak test shall be at the Contractor's expense and shall require capping and sealing all openings.
 - 3. Seal ducts to bring the air leakage into compliance.
 - 4. Contractor shall notify the Engineer five business days prior to pressurizing ductwork for testing.
- C. Test Procedure:
 - 1. Testing shall be as listed in the latest edition of the SMACNA HVAC Duct Leakage Manual, with the following additional requirements:
 - a. The required leakage class for Seal Class A, rectangular ducts, shall be 4; round shall be 2.
 - b. Test pressure shall be the specified duct pressure class. Testing at reduced pressures and converting the results mathematically is not acceptable. This is required to test the structural integrity of the duct system.
 - c. If any leak causes discernible noise at a distance of 3 feet, that leak shall be eliminated, regardless of whether that section of duct passed the leakage test.
 - d. All joints shall be felt by hand, and all discernible leaks shall be sealed.
 - e. Totaling leakage from several tested sections and comparing them to the allowable leakage for the entire system is not acceptable. Each section must pass the test individually.
 - f. Contractor shall notify the Engineer five business days prior to pressurizing ductwork for testing. Failure to notify the Engineer of pressure testing may require the contractor to repeat the duct pressure test after proper notification.
 - g. Upon completion of the pressure test, the contractor shall submit an air duct leakage test summary report as outlined in the SMACNA HVAC Duct Leakage Test Manual.
 - h. All access doors, taps to terminal air boxes, and other accessories and penetrations must be installed prior to testing. Including terminal air boxes in the test is not required.
 - i. Positive pressure leakage testing is acceptable for negative pressure ductwork.

3.06 DUCTWORK PENETRATIONS

A. Seal all duct penetrations of walls that are not fire rated by caulking or packing with fiberglass. Install trim strip to cover vacant space and raw construction edges of all openings in finished rooms. Install escutcheon ring at all round duct openings in finished rooms. Trim strips and rings shall be same material and finish as exposed duct.

SECTION 23 3300 DUCTWORK ACCESSORIES

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Fabric Connectors.
- B. Duct Access Doors.
- C. Duct Test Holes.
- D. Temperature Control Dampers.

PART 2 - PRODUCTS

2.01 FABRIC CONNECTORS

- A. Fabric connectors shall be installed between all fans or fan units and metal ducts or casings to prevent transfer of fan or motor vibration.
- B. The fabric connectors shall be completely flexible material which shall be in folds and not drawn tight.
- C. Fabric connectors shall be of glass fabric double coated with neoprene, with UL approval. Weight = 30 oz. per square yard minimum. Fabric shall not be affected by mildew and shall be absolutely waterproof, airtight and resistant to acids, alkalis, grease and gasoline, and shall be noncombustible.
- D. Fabric connections shall not exceed 6" in length on ductwork that has a positive pressure. On ductwork that has a negative pressure, the length shall not exceed 2" in length.
- E. All corners shall be folded, sealed with mastic and stapled on 1" centers.
- F. Fabric connectors shall not be painted.
- G. Unless otherwise shown on the drawings, the fabric connection at the inlet to centrifugal fans shall be at least one duct diameter from the fan to prevent inlet turbulence.
- H. Materials:
 - 1. Durodyne MFN-4-100
 - 2. Vent Fabrics, Inc.
 - 3. "Ventglas"
 - 4. Proflex PFC3NGA

2.02 DUCT ACCESS DOORS

- A. Fabricate per Fig. 7-2 and 7-3 of the SMACNA HVAC Duct Construction Standards and as indicated.
- B. Review locations prior to fabrication. Install access doors at fire dampers, smoke dampers, motorized dampers, fan bearings, filters, automatic controls, humidifiers, louvers, duct coils and other equipment requiring service inside the duct.
- C. Construction shall be suitable for the pressure class of the duct. Fabricate rigid, airtight, and close-fitting doors of materials identical to adjacent ductwork with sealing gaskets butt or piano hinges, and quick fastening locking devices. For insulated ductwork, install minimum one inch thick insulation with sheet metal cover.
- D. Access doors with sheet metal screw fasteners are not acceptable.
- E. Minimum size for access doors shall be 24" x 16" or full duct size, whichever is less.

2.03 DUCT TEST HOLES

A. Cut or drill temporary test holes in ducts as required. Cap with neat patches, neoprene plugs, threaded plugs, or threaded or twist-on metal caps.

2.04 DUCTWORK ACCESSORY SEALANTS

A. Ductwork accessory sealants and adhesives shall conform to Section 23 3100.

2.05 CONTROL DAMPERS AND DAMPER ACTUATORS

- A. Control dampers and damper actuators shall be furnished by the Temperature Control Contractor (Section 23 0900) and shall be installed by this Contractor.
- B. Coordinate exact sizes, locations, and installation requirements with the Temperature Control Contractor.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. General Installation Requirements:
 - 1. Install accessories in accordance with manufacturer's instructions.
 - 2. Where duct access doors are located above inaccessible ceilings, provide ceiling access doors. Coordinate location with the Engineer.
 - 3. Coordinate and install access doors provided by others.
 - 4. Provide access doors for all equipment requiring maintenance or adjustment above an inaccessible ceiling. Minimum size shall be 24" x 24".
 - 5. Provide duct test holes where indicated and as required for testing and balancing purposes.
- B. Control Dampers and Damper Actuators:
 - 1. Install control dampers and damper actuators in accordance with manufacturer's instructions and in coordination with the Temperature Control Contractor.
 - 2. Seal around damper frame inside ductwork with duct sealant to prevent bypass around damper.
 - 3. Provide duct access door at each control damper.

SECTION 23 3416 CENTRIFUGAL FANS

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Utility/Vent Sets.
- B. Performance Ratings: Bear the AMCA Certified Rating Seal Air Performance.
- C. Fabrication: Conform to AMCA 99.
- D. Fan Energy Index (FEI): Fans shall meet or exceed the minimum FEI scheduled at the specified airflow, pressure, and air density (duty point). In no case shall the FEI at the specified duty point fall below 1.1.

1.02 SUBMITTALS

- A. Submit shop drawings per Section 23 0500. Include data on all fans and accessories. Submit sound power levels for both fan inlet and outlet at rated capacity. Submit motor ratings and electrical characteristics, plus motor and electrical accessories. Submit multi-speed fan curves including minimum and maximum fan speed with specified operating points clearly plotted. Submit the Fan Energy Index (FEI) at the selected duty point.
- B. Submit operation and maintenance data. Include instructions for lubrication, motor and drive replacement, and spare parts list.
- C. Piezometer Flow Coefficients: Submittals for fans shall clearly indicate the size and associated flow coefficient for each fan included in the submittal as it relates to the piezometric airflow measuring system. Provide instructions indicating how the flow coefficient can be used in calculating fan airflow using the fan manufacturer-provided empirically derived formulas for calculating airflow. Include recommended differential pressure controller ΔP range (inches w.g.) based on scheduled maximum airflows.

1.03 EXTRA STOCK

A. Provide one extra belt set for each fan unit.

1.04 DELIVERY, STORAGE, AND HANDLING

A. Protect motors, shafts, and bearings from weather and construction dust.

PART 2 - PRODUCTS

2.01 UTILITY BLOWER

- A. Fan Description: Single width, single Inlet, centrifugal non-overloading centrifugal fan with air foil or backward inclined wheel. Suitable for ambient temperatures from -40°F to +120°F.
- B. Construction:
 - 1. Wheel: Wheel shall be steel centrifugal backward inclined, non-overloading flat blade type. Blades shall be continuously welded to the backplate and inlet shroud. Wheel hub shall be keyed and securely attached to the motor shaft.
 - 2. Housing: Steel or aluminum construction with baked enamel finish. Adaptable to any of eight (8) discharge positions in the field.
 - 3. Drive: Arrangement 10 belt drive with motor below shaft. Adjustable pitch sheaves with the specified operating point in the center of adjustment range. Sized for minimum 1.2 of motor horsepower..
 - 4. Support: Steel or aluminum construction with baked enamel finish.
 - 5. Fan disassembly will be required to bring into the building due to limited door widths and access to mechanical room. Provide breakdown/knock down fan construction.
- C. Bearings: Regreasable bearings rated for 40,000 hour B-10 life at specified operating point.

D. Protection:

- 1. Belt guards with tachometer knockouts on indoor fans. Removable weather covers on outdoor fans.
- E. Motor (as scheduled on the drawings):
 - 1. Induction: Furnish externally mounted open drip-proof, ball bearing motor, with adjustable mounts for belt tightening. Refer to motor specification for motor requirements.
 - a. Disconnect as scheduled on drawings.
- F. Piezometer Airflow Measuring: Provide fan with factory installed piezometer ports for monitoring the pressure difference between the fan inlet and the smallest diameter of the inlet cone. Ports shall be installed by the factory to ensure proper location of the taps to match how the fans were tested. Orifices shall be factory drilled in the smallest diameter of the inlet cone venturi. Flow tubes from each venturi sensor shall extend to a termination plate mounted on the fan housing. High pressure flow probes shall be factory mounted in the low velocity fan inlet. Flow probes from the high-pressure sensor shall extend to a termination plate mounted on the fan housing. Transducer for measuring differential pressure shall be provided by the Temperature Control Contractor (TCC). Include with fan submittal the empirically derived formulas developed by the fan manufacturer for each supply and return fan provided with the air handling unit, along with the recommended differential pressure transducer range.
- G. Manufacturers:
 - 1. Twin City
 - 2. Aerovent
 - 3. Greenheck
 - 4. Cook
 - 5. Trane
 - 6. ACME
 - 7. PennBarry Blower
 - 8. FloAire

PART 3 - EXECUTION

3.01 INSTALLATION

- A. General Installation Requirements:
 - 1. Prime all fan parts after cleaning, but prior to assembly. Apply a second finish coat to all exterior surfaces and all accessible interior surfaces after assembly. Apply rust preventative coating to shafts.
 - 2. Do not operate fans for any purpose until ductwork is clean, filters are in place, bearings lubricated, and fan has been test run under observation.
 - 3. Install flexible connections between fan and ductwork. Install metal bands of connectors parallel with minimum 1" flex between ductwork and fan while running.

SECTION 23 6213 AIR COOLED CONDENSING UNITS OWNER PURCHASED, CONTRACTOR INSTALLED

PART 1 - GENERAL

1.01 GENERAL INFORMATION

A. Equipment is being pre-purchased by owner. Contractor is not responsible for equipment purchase but shall be responsible for receiving, unloading, assembly and/or disassembly of the equipment. Contractor shall coordinate equipment shipping date with the Owner. Contractor shall coordinate with Owner to obtain submittals and supplier information for the equipment. Contractor shall provide any other miscellaneous equipment defined in this specification.

1.02 DELIVERY, STORAGE, AND HANDLING

- A. Comply with manufacturer's installation instructions for rigging, unloading, and transporting units.
- B. Protect units on site from physical damage. Protect coils.

PART 2 - PRODUCTS

2.01 GENERAL

- A. Condensing unit is Owner pre-purchased. Refer to equipment schedule and equipment submittals for detailed information on the unit.
- B. Coordinate all controls, electrical, and piping requirements with manufacturer's installation requirements.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Install in accordance with manufacturer's instructions.
- B. Comb all condenser coils to repair bent fins.
- C. Install on vibration isolators as scheduled on the drawings or in Section 23 0548.
- D. Connect to refrigeration piping and evaporators.

SECTION 23 7313 INDOOR MODULAR AIR HANDLING UNITS OWNER PURCHASED, CONTRACTOR INSTALLED

PART 1 - GENERAL

1.01 GENERAL INFORMATION

- A. Modular Indoor Handling Units.
- B. Equipment is being pre-purchased by Owner. Contractor is not responsible for equipment purchase but shall be responsible for receiving, unloading, assembly and/or disassembly of the equipment. Contractor shall coordinate equipment shipping date with the Owner. Contractor shall coordinate with Owner to obtain submittals and supplier information for the equipment. Contractor shall provide any other miscellaneous equipment defined in this specification.

1.02 DELIVERY, STORAGE, AND HANDLING

- A. Equipment is being pre-purchased by Owner. Contractor is responsible for receiving, unloading, assembly and/or disassembly of the equipment. Contractor shall coordinate equipment shipping date with the Owner. Contractor may store equipment in owner's shop but shall provide protective measures.
- B. Store unit in clean dry place and protect from weather and construction traffic. Handle carefully to avoid damage to components, enclosures, and finish.

PART 2 - PRODUCTS

2.01 MODULAR INDOOR AIR HANDLING UNITS

- A. Air handling unit is Owner pre-purchased. Refer to equipment schedule and equipment submittals for detailed information on the air handling unit. Contractor is responsible for any disassembly and reassembly of air handling unit to install within the building.
- B. Air handling unit will be provided with piezometer airflow measuring. Transducer for measuring differential pressure shall be provided by the Temperature Control Contractor (TCC). the TCC shall coordinate the empirically derived formulas developed by the fan manufacturer and the recommended differential pressure transducer range required.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. General Installation Requirements
 - 1. Install per manufacturer's instructions.
 - 2. During construction provide temporary closures of metal or taped polyethylene over openings into housing ducts to prevent dust from entering ductwork.
 - 3. Seal all contractor installed penetrations airtight. Seal all openings prior to cleaning. Seal holes with proper SMACNA closures conforming to pressure class of the housing.
 - 4. Do not operate units for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings lubricated, and fan has been test run under observation.
 - 5. Provide and install control dampers and actuators for the mixing box dampers.
- B. Coil Requirements:
 - 1. Comb all coils to repair bent fins.
 - 2. Extend coil drain and vent connections to outside unit housing. Provide normally closed valve on drain and vent connection outside of unit housing.

SECTION 26 0500 BASIC ELECTRICAL REQUIREMENTS

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Requirements applicable to all Division 26 Sections. Also refer to Division 1 General Requirements. This section is also applicable to Fire Alarm and Detection Systems Section 28 3100.
- B. All materials and installation methods shall conform to the applicable standards, guidelines and codes referenced herein and within each specification section.

1.02 REFERENCES

A. NFPA 70 - National Electrical Code (NEC)

1.03 SCOPE OF WORK

- A. This Specification and the associated drawings govern furnishing, installing, testing and placing into satisfactory operation the Electrical Systems.
- B. The Contractor shall furnish and install all new materials as indicated on the drawings, and/or in these specifications, and all items required to make the portion of the Electrical Work a finished and working system.
- C. All work will be awarded under a single General Contract. The division of work listed below is for the Contractor's convenience and lists normal breakdown of the work.
- D. Description of Systems shall be as follows:
 - 1. Electrical power system to and including luminaires, equipment, motors, devices, etc.
 - 2. Grounding system.
 - 3. Fire alarm system.
 - 4. Wiring system for temperature control system as shown on the drawings.
 - 5. Wiring of equipment furnished by others.
 - 6. Removal work and/or relocation and reuse of existing systems and equipment.
 - 7. Furnish and install firestopping systems for penetrations of fire-rated construction associated with this Contractor's work.
- E. Work Not Included:
 - 1. Temperature control wiring for plumbing and HVAC equipment (unless otherwise indicated) will be by other Contractors.

1.04 WORK SEQUENCE

- A. All work that will produce excessive noise or interference with normal building operations, as determined by the Owner, shall be scheduled with the Owner. It may be necessary to schedule such work during unoccupied hours. The Owner reserves the right to determine when restricted construction hours are required.
- B. Itemize all work and list associated hours and pay scale for each item.

1.05 DIVISION OF WORK BETWEEN MECHANICAL, ELECTRICAL, and CONTROL CONTRACTORS

- A. Division of work is the responsibility of the Prime Contractor. Any scope of work described at any location on the contract document shall be sufficient for including said requirement in the project. The Prime Contractor shall be solely responsible for determining the appropriate subcontractor for the described scope. In no case shall the project be assessed an additional cost for scope that is described on the contract documents on bid day. The following division of responsibility is a guideline based on typical industry practice.
- B. Definitions:
 - 1. "Mechanical Contractors" refers to the Contractors listed in Division 21/22/23 of this Specification.

- 2. "Technology Contractors" refers to the Contractors furnishing and installing systems listed in Division 27/28 of this Specification.
- 3. Motor Power Wiring: The single phase or 3 phase wiring extending from the power source (transformer, panelboard, feeder circuits, etc.) through disconnect switches and motor controllers to, and including the connections to the terminals of the motor.
- 4. Motor Control Wiring: The wiring associated with the remote operation of the magnetic coils of magnetic motor starters or relays, or the wiring that permits direct cycling of motors by means of devices in series with the motor power wiring. In the latter case, the devices are usually single phase, have "Manual-Off-Auto" provisions, and are usually connected into the motor power wiring through a manual motor starter.
- 5. Control devices such as start-stop push buttons, thermostats, pressure switches, flow switches, relays, etc., generally represent the types of equipment associated with motor control wiring.
- 6. Motor control wiring is single phase and usually 120 volts. In some instances, the voltage will be the same as the motor power wiring. When the motor power wiring exceeds 120 volts, a control transformer is usually used to give a control voltage of 120 volts.
- 7. Temperature Control Wiring: The wiring associated with the operation of a motorized damper, solenoid valve or motorized valve, etc., either modulating or two-position, as opposed to wiring that directly powers or controls a motor used to drive equipment such as fans, pumps, etc. This wiring will be from a 120-volt source and may continue as 120 volt, or be reduced in voltage (24 volt), in which case a control transformer shall be furnished as part of the temperature control wiring.
- 8. Control Motor: An electric device used to operate dampers, valves, etc. It may be two-position or modulating. Conventional characteristics of such a motor are 24 volts, 60 cycles, 1 phase, although other voltages may be encountered.
- 9. Low Voltage Technology Wiring: The wiring associated with the technology systems, used for analog or digital signals between equipment.
- 10. Telecommunications/Technology Rough-in: Relates specifically to the backboxes, necessary plaster rings and other miscellaneous hardware required for the installation or mounting of telecommunications/technology information outlets.
- C. General:
 - 1. The purpose of these Specifications is to outline the Electrical and Mechanical Contractors' responsibilities related to electrical work required for items such as temperature controls, mechanical equipment, fans, chillers, compressors, etc. The exact wiring requirements for much of the equipment cannot be determined until the systems have been selected and submittals approved. Therefore, the electrical drawings show only known wiring related to such items. All wiring not shown on the electrical drawings, but required for mechanical systems, is the responsibility of the Mechanical Contractor.
 - 2. Where the drawings require the Electrical Contractor to wire between equipment furnished by the Mechanical Contractor, such wiring shall terminate at terminals provided in the equipment. The Mechanical Contractor shall furnish complete wiring diagrams and supervision to the Electrical Contractor and designate the terminal numbers for correct wiring.
 - 3. The Electrical Contractor shall establish electrical utility elevations prior to fabrication and installation. The Electrical Contractor shall coordinate utility elevations with other trades. When a conflict arises, priority shall be as follows:
 - a. Luminaires.
 - b. Gravity flow piping, including steam and condensate.
 - c. Electrical bus duct.
 - d. Sheet metal.

- e. Cable trays, including access space.
- f. Other piping.
- g. Conduits and wireway.
- D. Mechanical Contractor's Responsibility:
 - 1. Assumes responsibility for internal wiring of all equipment furnished by the Mechanical Contractor.
 - 2. Assumes all responsibility for miscellaneous items furnished by the Mechanical Contractor that require wiring but are not shown on the electrical drawings or specified in the Electrical Specification. If items such as relays, flow switches, or interlocks are required to make the mechanical system function correctly or are required by the manufacturer, they are the responsibility of the Mechanical Contractor.
 - 3. Assumes all responsibility for Temperature Control wiring, if the Temperature Control Contractor is a Subcontractor to the Mechanical Contractor.
 - 4. This Contractor is responsible for coordination of utilities with all other Contractors. If any field coordination conflicts are found, the Contractor shall coordinate with other Contractors to determine a viable layout.
- E. Temperature Control Contractor's or Subcontractor's Responsibility:
 - 1. Wiring of all devices needed to make the Temperature Control System functional.
 - 2. Verifying any control wiring on the electrical drawings as being by the Electrical Contractor. All wiring required for the Control System, but not shown on the electrical drawings, is the responsibility of the Temperature Control Contractor or Subcontractor.
 - 3. Coordinating equipment locations (such as PE's, EP's, relays, transformers, etc.) with the Electrical Contractor, where wiring of the equipment is by the Electrical Contractor.
- F. Electrical Contractor's Responsibility:
 - 1. Furnishes and installs all combination starters, manual starters and disconnect devices shown on the Electrical Drawings or indicated to be by the Electrical Contractor in the Mechanical Drawings or Specifications.
 - 2. Installs and wires all remote-control devices furnished by the Mechanical Contractor or Temperature Control Contractor when so noted on the Electrical Drawings.
 - 3. Furnishes and installs motor control and temperature control wiring, when noted on the drawings.
 - 4. Furnishes, installs, and connects all relays, etc., for automatic shutdown of certain mechanical equipment (supply fans, exhaust fans, etc.) upon actuation of the Fire Alarm System.
 - 5. This Contractor is responsible for coordination of utilities with all other Contractors. If any field coordination conflicts are found, the Contractor shall coordinate with other Contractors to determine a viable layout.

1.06 QUALITY ASSURANCE

- A. Contractor's Responsibility Prior to Submitting Pricing/Bid Data:
 - 1. The Contractor is responsible for constructing complete and operating systems. The Contractor acknowledges and understands that the Contract Documents are a two-dimensional representation of a three-dimensional object, subject to human interpretation. This representation may include imperfect data, interpreted codes, utility guides, three-dimensional conflicts, and required field coordination items. Such deficiencies can be corrected when identified prior to ordering material and starting installation. The Contractor agrees to carefully study and compare the individual Contract Documents and report at once in writing to the Architect/Engineer any deficiencies the Contractor may discover. The Contractor further agrees to require each subcontractor to likewise study the documents and report at once any deficiencies discovered.

- 2. The Contractor shall resolve all reported deficiencies with the Architect/Engineer prior to awarding any subcontracts, ordering material, or starting any work with the Contractor's own employees. Any work performed prior to receipt of instructions from the Architect/Engineer will be done at the Contractor's risk.
- B. Qualifications:
 - 1. Only products of reputable manufacturers as determined by the Architect/Engineer are acceptable.
 - 2. All Contractors and subcontractors shall employ only workmen who are skilled in their trades. At all times, the number of apprentices at the job site shall be less than or equal to the number of journeymen at the job site.
- C. Compliance with Codes, Laws, Ordinances:
 - 1. Conform to all requirements of the State of Iowa Codes, Laws, Ordinances and other regulations having jurisdiction.
 - 2. Conform to all published standards of Iowa Department of Administrative Services.
 - 3. If there is a discrepancy between the codes and regulations and these specifications, the Architect/Engineer shall determine the method or equipment used.
 - 4. If the Contractor notes, at the time of bidding, that any parts of the drawings or specifications do not comply with the codes or regulations, Contractor shall inform the Architect/Engineer in writing, requesting a clarification. If there is insufficient time for this procedure, Contractor shall submit with the proposal a separate price to make the system comply with the codes and regulations.
 - 5. All changes to the system made after the letting of the contract to comply with codes or the requirements of the Inspector, shall be made by the Contractor without cost to the Owner.
 - 6. If there is a discrepancy between manufacturer's recommendations and these specifications, the manufacturer's recommendations shall govern.
 - 7. If there are no local codes having jurisdiction, the current issue of the National Electrical Code shall be followed.
- D. Permits, Fees, Taxes, Inspections:
 - 1. Procure all applicable permits and licenses.
 - 2. Abide by all laws, regulations, ordinances, and other rules of the State or Political Subdivision where the work is done, or as required by any duly constituted public authority.
 - 3. Pay all charges for permits or licenses.
 - 4. Pay all fees and taxes imposed by State, Municipal, and other regulatory bodies.
 - 5. Pay all charges arising out of required inspections by an authorized body.
 - 6. Pay all charges arising out of required contract document reviews associated with the project and as initiated by the Owner or authorized agency/consultant.
 - 7. Where applicable, all fixtures, equipment and materials shall be listed by Underwriter's Laboratories, Inc. or a nationally recognized testing organization.
 - 8. Pay all telephone company charges related to the service or change in service.
- E. Examination of Drawings:
 - 1. The drawings for the electrical work are completely diagrammatic, intended to convey the scope of the work and to indicate the general arrangements and locations of equipment, outlets, etc., and the approximate sizes of equipment.
 - 2. Contractor shall determine the exact locations of equipment and rough-ins, and the exact routing of raceways to best fit the layout of the job. Conduit entry points for electrical equipment including, but not limited to, panelboards, switchboards, switchgear and unit substations, shall be determined by the Contractor unless noted in the contract documents.
 - 3. Scaling of the drawings will not be sufficient or accurate for determining these locations.

- 4. Where job conditions require reasonable changes in arrangements and locations, such changes shall be made by the Contractor at no additional cost to the Owner.
- 5. Because of the scale of the drawings, certain basic items, such as junction boxes, pull boxes, conduit fittings, etc., may not be shown, but where required by other sections of the specifications or required for proper installation of the work, such items shall be furnished and installed.
- 6. If an item is either shown on the drawings or called for in the specifications, it shall be included in this contract.
- 7. The Contractor shall determine quantities and quality of material and equipment required from the documents. Where discrepancies arise between drawings, schedules and/or specifications, the greater and better-quality number shall govern.
- 8. Where used in electrical documents the word "furnish" shall mean supply for use, the word "install" shall mean connect up complete and ready for operation, and the word "provide" shall mean to supply for use and connect up complete and ready for operation.
- 9. Any item listed as furnished shall also be installed unless otherwise noted.
- 10. Any item listed as installed shall also be furnished unless otherwise noted.
- F. Electronic Media/Files:
 - 1. Construction drawings for this project have been prepared utilizing Revit.
 - 2. Contractors and Subcontractors may request electronic media files of the contract drawings and/or copies of the specifications. Specifications will be provided in PDF format.
 - 3. Upon request for electronic media, the Contractor shall complete and return a signed "Electronic File Transmittal" form provided by IMEG.
 - 4. If the information requested includes floor plans prepared by others, the Contractor will be responsible for obtaining approval from the appropriate Design Professional for use of that part of the document.
 - 5. The electronic contract documents can be used for preparation of shop drawings and as-built drawings only. The information may not be used in whole or in part for any other project.
 - 6. The drawings prepared by IMEG for bidding purposes may not be used directly for ductwork layout drawings or coordination drawings.
 - 7. The use of these CAD documents by the Contractor does not relieve them from their responsibility for coordination of work with other trades and verification of space available for the installation.
 - 8. The information is provided to expedite the project and assist the Contractor with no guarantee by IMEG as to the accuracy or correctness of the information provided. IMEG accepts no responsibility or liability for the Contractor's use of these documents.
- G. Field Measurements:
 - 1. Verify all pertinent dimensions at the job site before ordering any conduit, conductors, wireways, bus duct, fittings, etc.

1.07 WEB-BASED PROJECT SOFTWARE

- A. The General Contractor shall provide a web-based project software site for the purpose of hosting and managing project communication and documentation until completion of the warranty phase.
- B. The web-based project software shall include, at a minimum, the following features: construction schedule, submittals, RFIs, ASIs, construction change directives, change orders, drawing management, specification management, payment applications, contract modifications, meeting minutes, construction progress photos.
- C. Provide web-based project software user licenses for use by the Architect/Engineer. Access will be provided from the start of the project through the completion of the warranty phase.
- D. At project completion, provide digital archive of entire project in format that is readable by common desktop software applications in format acceptable to Architect/Engineer. Provide data in locked format to prevent further changes.

1.08 SUBMITTALS

- A. Submittals shall be required for the following items, and for additional items where required elsewhere in the specifications or on the drawings.
 - 1. Submittals list:

Referenced	
Specification Section	Submittal Item
26 24 19	Motor Control
26 29 23	Variable Frequency Drives
28 31 00	Fire Alarm and Detection Systems

- B. General Submittal Procedures: In addition to the provisions of Division 1, the following are required:
 - 1. Transmittal: Each transmittal shall include the following:
 - a. Date
 - b. Project title and number
 - c. Contractor's name and address
 - d. Division of work (e.g., electrical, plumbing, heating, ventilating, etc.)
 - e. Description of items submitted and relevant specification number
 - f. Notations of deviations from the contract documents
 - g. Other pertinent data
 - 2. Submittal Cover Sheet: Each submittal shall include a cover sheet containing:
 - a. Date
 - b. Project title and number
 - c. Architect/Engineer
 - d. Contractor and subcontractors' names and addresses
 - e. Supplier and manufacturer's names and addresses
 - f. Division of work (e.g., electrical, plumbing, heating, ventilating, etc.)
 - g. Description of item submitted (using project nomenclature) and relevant specification number
 - h. Notations of deviations from the contract documents
 - i. Other pertinent data
 - j. Provide space for Contractor's review stamps
 - 3. Composition:
 - a. Submittals shall be submitted using specification sections and the project nomenclature for each item.
 - b. Individual submittal packages shall be prepared for items in each specification section. All items within a single specification section shall be packaged together where possible. An individual submittal may contain items from multiple specifications sections if the items are intimately linked (e.g., pumps and motors).
 - c. All sets shall contain an index of the items enclosed with a general topic description on the cover.

- 4. Content: Submittals shall include all fabrication, erection, layout, and setting drawings; manufacturers' standard drawings; schedules; descriptive literature, catalogs and brochures; performance and test data; wiring and control diagrams; dimensions; shipping and operating weights; shipping splits; service clearances; and all other drawings and descriptive data of materials of construction as may be required to show that the materials, equipment or systems and the location thereof conform to the requirements of the contract documents.
- 5. Contractor's Approval Stamp:
 - a. The Contractor shall thoroughly review and approve all shop drawings before submitting them to the Architect/Engineer. The Contractor shall stamp, date and sign each submittal certifying it has been reviewed.
 - b. Unstamped submittals will be rejected.
 - c. The Contractor's review shall include, but not be limited to, verification of the following:
 - 1) Only approved manufacturers are used.
 - 2) Addenda items have been incorporated.
 - 3) Catalog numbers and options match those specified.
 - 4) Performance data matches that specified.
 - 5) Electrical characteristics and loads match those specified.
 - 6) Equipment connection locations, sizes, capacities, etc. have been coordinated with other affected trades.
 - 7) Dimensions and service clearances are suitable for the intended location.
 - 8) Equipment dimensions are coordinated with support steel, housekeeping pads, openings, etc.
 - 9) Constructability issues are resolved (e.g., weights and dimensions are suitable for getting the item into the building and into place, sinks fit into countertops, etc.).
 - d. The Contractor shall review, stamp and approve all subcontractors' submittals as described above.
 - e. The Contractor's approval stamp is required on all submittals. Approval will indicate the Contractor's review of all material and a complete understanding of exactly what is to be furnished. Contractor shall clearly mark all deviations from the contract documents on all submittals. If deviations are not marked by the Contractor, then the item shall be required to meet all drawing and specification requirements.
- 6. Submittal Identification and Markings:
 - a. The Contractor shall clearly mark each item with the same nomenclature applied on the drawings or in the specifications.
 - b. The Contractor shall clearly indicate the size, finish, material, etc.
 - c. Where more than one model is shown on a manufacturer's sheet, the Contractor shall clearly indicate exactly which item and which data is intended.
 - d. All marks and identifications on the submittals shall be unambiguous.
- 7. Schedule submittals to expedite the project. Coordinate submission of related items.
- 8. Identify variations from the contract documents and product or system limitations that may be detrimental to the successful performance of the completed work.
- 9. Reproduction of contract documents alone is not acceptable for submittals.
- 10. Incomplete submittals will be rejected without review. Partial submittals will only be reviewed with prior approval from the Architect/Engineer.
- 11. Submittals not required by the contract documents may be returned without review.

- 12. The Architect/Engineer's responsibility shall be to review one set of shop drawing submittals for each product. If the first submittal is incomplete or does not comply with the drawings and/or specifications, the Contractor shall be responsible to bear the cost for the Architect/Engineer to recheck and handle the additional shop drawing submittals.
- 13. Submittals shall be reviewed and approved by the Architect/Engineer before releasing any equipment for manufacture or shipment.
- 14. Contractor's responsibility for errors, omissions or deviation from the contract documents in submittals is not relieved by the Architect/Engineer's approval.
- 15. Schedule shall allow for adequate time to perform orderly and proper review of submittals, including time for consultants and Owner if required, and resubmittals by Contractor if necessary, and to cause no delay in Work or in activities of Owner or other contractors.
 - a. Allow at least two weeks for Architect's/Engineer's review and processing of each submittal, excluding mailing.
- 16. Architect/Engineer reserves the right to withhold action on a submittal which, in the Architect/Engineer's opinion, requires coordination with other submittals until related submittals are received. The Architect/Engineer will notify the Contractor, in writing, when they exercise this right.
- C. Electronic Submittal Procedures:
 - 1. Distribution: Email submittals as attachments to all parties designated by the Architect/Engineer, unless a web-based submittal program is used.
 - 2. Transmittals: Each submittal shall include an individual electronic letter of transmittal.
 - 3. Format: Electronic submittals shall be in PDF format only. Scanned copies, in PDF format, of paper originals are acceptable. Submittals that are not legible will be rejected. Do not set any permission restrictions on files; protected, locked, or secured documents will be rejected.
 - 4. File Names: Electronic submittal file names shall include the relevant specification section number followed by a description of the item submitted, as follows. Where possible, include the transmittal as the first page of the PDF instead of using multiple electronic files.
 - a. Submittal file name: 26 XX XX.description.YYYYMMDD
 - b. Transmittal file name: 26 XX XX.description.YYYYMMDD
 - 5. File Size: Files shall be transmitted via a pre-approved method. Larger files may require an alternative transfer method, which shall also be pre-approved.

1.09 SCHEDULE OF VALUES

- A. The requirements herein are in addition to the provisions of Division 1.
- B. Format:
 - 1. Use AIA Document Continuation Sheets G703 or another similar form approved by the Owner and Architect/Engineer.
 - 2. Submit in Excel format.
 - 3. Support values given with substantiating data.
- C. Preparation:
 - 1. Itemize work required by each specification section and list all providers. All work provided by subcontractors and major suppliers shall be listed on the Schedule of Values. List each subcontractor and supplier by company name.
 - 2. Break down all costs into:
 - a. Material: Delivered cost of product with taxes paid.
 - b. Labor: Labor cost, excluding overhead and profit.
- D. Update Schedule of Values when:
 - 1. Indicated by Architect/Engineer.

- 2. Change of subcontractor or supplier occurs.
- 3. Change of product or equipment occurs.

1.10 CHANGE ORDERS

- A. A detailed material and labor takeoff shall be prepared for each change order, along with labor rates and markup percentages. Change orders shall be broken down by sheet or associated individual line item indicated in the change associated narrative, whichever provides the most detailed breakdown. Change orders with inadequate breakdown will be rejected.
- B. Itemized pricing with unit cost shall be provided from all distributors and associated subcontractors.
- C. Change order work shall not proceed until authorized.

1.11 PRODUCT DELIVERY, STORAGE, HANDLING and MAINTENANCE

- A. Exercise care in transporting and handling to avoid damage to materials. Store materials on the site to prevent damage.
- B. Protect equipment, components, and openings with airtight covers and exercise care at every stage of storage, handling, and installation of equipment to prevent airborne dust and dirt from entering or fouling equipment to include, but not limited to:
 - 1. Distribution equipment branch panels, distribution panels, switchboards, motor control centers, etc.
 - 2. Variable frequency drives.
 - 3. Transformers, ventilated.
 - 4. Electronic equipment, UPS, harmonic filters, power factor correction.
 - 5. Lighting luminaires and lighting control systems.
- C. Equipment and components that are visibly damaged or have been subject to environmental conditions prior to building turnover to Owner that could shorten the life of the component (for example, water damage, humidity, dust and debris, excessive hot or cold storage location, etc.) shall be repaired or replaced with new equipment or components without additional cost to the building owner.
- D. Keep all materials clean, dry and free from damaging environments.
- E. Coordinate the installation of heavy and large equipment with the General Contractor and/or Owner. If the Electrical Contractor does not have prior documented experience in rigging and lifting similar equipment, he/she shall contract with a qualified lifting and rigging service that has similar documented experience. Follow all equipment lifting and support guidelines for handling and moving.
- F. Contractor is responsible for moving equipment into the building and/or site. Contractor shall review site prior to bid for path locations and any required building modifications to allow movement of equipment. Contractor shall coordinate the work with other trades.

1.12 WARRANTY

- A. Provide one-year warranty for all fixtures, equipment, materials, and workmanship.
- B. The warranty period for all work in this specification Division shall commence on the date of Substantial Completion or successful system performance whichever occurs later. The warranty may also commence if a whole or partial system or any separate piece of equipment or component is put into use for the benefit of any party other than the installing contractor with prior written authorization of the Owner. In this instance, the warranty period shall commence on the date when such whole system, partial system or separate piece of equipment is placed in operation and accepted in writing by the Owner.
- C. Warranty requirements extend to correction, without cost to the Owner, of all work found to be defective or nonconforming to the contract documents. The Contractor shall bear the cost of correcting all damage due to defects or nonconformance with contract documents excluding repairs required as a result of improper maintenance or operation, or of normal wear as determined by the Architect/Engineer.

1.13 INSURANCE

A. This Contractor shall maintain insurance coverage as set forth in Division 1 of these specifications.

1.14 MATERIAL SUBSTITUTION

- A. Where several manufacturers' names are given, the manufacturer for which a catalog number is given is the basis for job design and establishes the quality.
- B. Equivalent equipment manufactured by the other listed manufacturers may be used. Contractor shall ensure that all items submitted by these other manufacturers meet all requirements of the drawings and specifications and fits in the allocated space. When using other listed manufacturers, the Contractor shall assume responsibility for any and all modifications necessary (including, but not limited to structural supports, electrical connections and rough-in, and regulatory agency approval, etc.) and coordinate such with other contractors. The Architect/Engineer shall make the final determination of whether a product is equivalent.
- C. Any material, article or equipment of other unnamed manufacturers which will adequately perform the services and duties imposed by the design and is of a quality equal to or better than the material, article or equipment identified by the drawings and specifications may be used if approval is secured in writing from the Architect/Engineer via addendum. The Contractor assumes all costs incurred as a result of using the offered material, article or equipment, on the Contractors part or on the part of other Contractors whose work is affected.
- D. Voluntary add or deduct prices for alternate materials may be listed on the bid form. These items will not be used in determining the low bidder. This Contractor assumes all costs incurred as a result of using the offered material or equipment on the Contractors part or on the part of other Contractors whose work is affected.
- E. All material substitutions requested after the final addendum must be listed as voluntary changes on the bid form.

PART 2 - PRODUCTS

2.01 GENERAL

A. All items of material having a similar function (e.g., safety switches, panelboards, switchboards, contactors, motor starters, dry type transformers) shall be of the same manufacturer unless specifically stated otherwise on drawings or elsewhere in specifications.

PART 3 - EXECUTION

3.01 JOBSITE SAFETY

A. Neither the professional activities of the Architect/Engineer, nor the presence of the Architect/Engineer or the employees and subconsultants at a construction site, shall relieve the Contractor and any other entity of their obligations, duties and responsibilities including, but not limited to, construction means, methods, sequence, techniques or procedures necessary for performing, superintending or coordinating all portions of the work of construction in accordance with the contract documents and any health or safety precautions required by any regulatory agencies. The Architect/Engineer and personnel have no authority to exercise any control over any construction contractor or other entity or their employees in connection with their work or any health or safety precautions. The Contractor is solely responsible for jobsite safety. The Architect/Engineer and the Architect/Engineer's consultants shall be indemnified and shall be made additional insureds under the Contractor's general liability insurance policy.

3.02 EXCAVATION, FILL, BACKFILL, COMPACTION

A. General:

- 1. Prior to the commencement of any excavation or digging, the Contractor shall verify all underground utilities with the regional utility locator. Provide prior notice to the locator before excavations. Contact information for most regional utility locaters can be found by calling 811.
- 2. The Contractor shall do all excavating, filling, backfilling, compacting, and restoration in connection with the work.
- B. Excavation:
 - 1. Make all excavations to accurate, solid, undisturbed earth, and to proper dimensions.

- 2. If excavations are carried in error below indicated levels, concrete of same strength as specified for the foundations or thoroughly compacted sand-gravel fill, as determined by the Architect/Engineer shall be placed in such excess excavations under the foundation. Place thoroughly compacted, clean, stable fill in excess excavations under slabs on grade, at the Contractor's expense.
- 3. Trim bottom and sides of excavations to grades required for foundations.
- 4. Protect excavations against frost and freezing.
- 5. Take care in excavating not to damage surrounding structures, equipment or buried pipe. Do not undermine footing or foundation.
- 6. Perform all trenching in a manner to prevent cave-ins and risk to workmen.
- 7. Where original surface is pavement or concrete, the surface shall be saw cut to provide clean edges and assist in the surface restoration.
- 8. If satisfactory bearing soil is not found at the indicated levels, immediately notify the Architect/Engineer or their representative, and do no further work until the Architect/Engineer or their representative gives further instructions.
- 9. Excavation shall be performed in all ground conditions, including rock, if encountered. Bidders shall visit the premises and determine the soil conditions by actual observations, borings, or other means. The cost of all such inspections, borings, etc., shall be borne by the bidder.
- 10. If a trench is excavated in rock, a compacted bed with a depth of 3" (minimum) of sand and gravel shall be used to support the conduit unless masonry cradles or encasements are used.
- 11. Mechanical excavation of the trench to line and grade of the conduit or to the bottom level of masonry cradles or encasements is permitted, unless otherwise indicated on the electrical drawings.
- 12. Mechanical excavation of the trench to line and grade where direct burial cables are to be installed is permitted provided the excavation is made to a depth to permit installation of the cable on a fine sand bed at least 3 inches deep.
- C. Dewatering:
 - 1. Furnish, install, operate and remove all dewatering pumps and pipes needed to keep trenches and pits free of water.
- D. Underground Obstructions:
 - 1. Known underground piping, conduit, feeders, foundations, and other obstructions in the vicinity of construction are shown on the drawings. Review <u>all</u> Bid Documents for all trades on the project to determine obstructions indicated. Take great care in making installations near underground obstructions.
 - 2. If objects not shown on the drawings are encountered, remove, relocate, or perform extra work as directed by the Architect/Engineer.
- E. Fill and Backfilling:
 - 1. No rubbish or waste material is permitted for fill or backfill.
 - 2. Provide all necessary sand and/or CA6 for backfilling.
 - 3. Native soil materials may be used as backfill if approved by the Geotechnical Engineer.
 - 4. Dispose of the excess excavated earth as directed.
 - 5. Backfill materials (native soil material, sand, and/or CA6) shall be suitable for required compaction, clean and free of perishable materials, frozen earth, debris, earth with a high void content, and stones greater than 4 inches in diameter. Water is not permitted to rise in unbackfilled trenches.
 - 6. Backfill all trenches and excavations immediately after installing of conduit, or removing forms, unless other protection is directed.

- 7. Around piers and isolated foundations and structures, backfill and fill shall be placed and consolidated simultaneously on all sides to prevent wedge action and displacement. Spread fill and backfill materials in 6" uniform horizontal layers with each layer compacted separately to required density.
- 8. For conduits that are not concrete encased, lay all conduits on a compacted bed of sand at least 3" deep. Backfill around conduits with sand, in 6" layers and compact each layer.
- 9. Backfill with native soil material (if approved) or sand up to grade for all conduits under slabs or paved areas. All other conduits shall have sand backfill to 6" above the top of the conduit.
- 10. Place all backfill above the sand in uniform layers not exceeding 6" deep. Place then carefully and uniformly tamp each layer to eliminate lateral or vertical displacement.
- 11. Where the fill and backfill will ultimately be under a building, floor or paving, each layer of fill shall be compacted to 95% of the maximum density as determined by AASHTO Designation T-99 or ASTM Designation D-698. Moisture content of soil at time of compaction shall not exceed plus or minus 2% of optimum moisture content as determined by AASHTO T-99 or ASTM D-698 test.
- 12. After backfilling of trenches, no superficial loads shall be placed on the exposed surface of the backfill until a period of 48 hours has elapsed.
- F. Surface Restoration:
 - Where trenches are cut through graded, planted or landscaped areas, the areas shall be restored to the original condition. Replace all planting and landscaping features removed or damaged to its original condition. At least 6" of topsoil shall be applied where disturbed areas are to be seeded or sodded. All lawn areas shall be sodded unless seeding is called out in the drawings or specifications.
 - 2. Concrete or asphalt type pavement, seal coat, rock, gravel or earth surfaces removed or damaged shall be replaced with comparable materials and restored to original condition. Broken edges shall be saw cut and repaired as directed by Architect/Engineer.

3.03 ARCHITECT/ENGINEER OBSERVATION OF WORK

- A. The Architect/Engineer will review the installation and provide a written report noting deficiencies requiring correction. The contractor's schedule shall account for these reviews and show them as line items in the approved schedule.
- B. Final Observation:
 - 1. All work above the ceilings must be complete prior to the Architect/Engineer's review. This includes, but is not limited to:
 - a. All junction boxes are closed and identified in accordance with Section 26 0553 Electrical Identification.
 - b. Luminaires, including ceiling-mounted exit and emergency lights, are installed and operational.
 - c. Luminaire whips are supported above the ceiling.
 - d. Conduit identification is installed in accordance with Section 26 0553 Electrical Identification.
 - e. Luminaires are suspended independently of the ceiling system when required by these contract documents.
 - f. All wall penetrations have been sealed.
 - 2. To prevent the Final Observation from occurring too early, the Contractor shall review the status of the work and certify, in writing, that the work is ready for the Final Observation.

3.04 PROJECT CLOSEOUT

A. The following paragraphs supplement the requirements of Division 1.

- B. Final Jobsite Observation:
 - 1. To prevent the Final Jobsite Observation from occurring too early, the Contractor shall review the completion status of the project and certify that the job is ready for the final jobsite observation.
 - 2. Attached to the end of this section is a typical list of items that represent the degree of job completeness expected prior to requesting a review. The Contractor shall sign the attached certification and return it to the Architect/Engineer so that the final observation can be scheduled.
 - 3. It is understood that if the Architect/Engineer finds the job not ready for the final observation and additional trips and observations are required to bring the project to completion, the cost of the additional time and expenses incurred by the Architect/Engineer will be deducted from the Contractor's final payment.
 - 4. Contractor shall notify Architect/Engineer 48 hours prior to installation of ceilings or lay-in ceiling tiles.
- C. The following must be submitted before Architect/Engineer recommends final payment:
 - 1. Operation and maintenance manuals with copies of approved shop drawings.
 - 2. Record documents including marked-up drawings and specifications.
 - 3. A report documenting the instructions given to the Owner's representatives complete with the number of hours spent in the instruction. The report shall bear the signature of an authorized agent of this Contractor and shall be signed by the Owner's representatives.
 - 4. Provide spare parts, maintenance, and extra materials in quantities specified in individual specification sections. Deliver to project site and place in location as directed and submit receipt to Architect/Engineer.
 - 5. Inspection and testing report by the fire alarm system manufacturer.
 - 6. Start-up reports on all equipment requiring a factory installation or start-up.
- D. Circuit Directories:
 - 1. Provide custom typed circuit directory for each branch circuit panelboard. Provide updated custom typed circuit directory for each existing branch circuit panelboard with new or revised circuits per the scope of work. Label shall include equipment name or final approved room name, room number, and load type for each circuit (examples: SUMP SP-1 or ROOM 101 RECEPT). Revise directory to reflect circuit changes required to balance phase loads. Printed copies of the bid document panel schedules are not acceptable as circuit directories.

3.05 OPERATION AND MAINTENANCE MANUALS

- A. General:
 - 1. Provide an electronic copy of the O&M manuals as described below for Architect/Engineer's review and approval. The electronic copy shall be corrected as required to address the Architect/Engineer's comments. Once corrected, electronic copies and paper copies shall be distributed as directed by the Architect/Engineer.
 - 2. Approved O&M manuals shall be completed and in the Owner's possession prior to Owner's acceptance and at least 10 days prior to instruction of operating personnel.
- B. Electronic Submittal Procedures:
 - 1. Distribution: Email the O&M manual as attachments to all parties designated by the Architect/Engineer.
 - 2. Transmittals: Each submittal shall include an individual electronic letter of transmittal.
 - 3. Format: Electronic submittals shall be in PDF format only. Scanned copies, in PDF format, of paper originals are acceptable. Submittals that are not legible will be rejected. Do not set any permission restrictions on files; protected, locked, or secured documents will be rejected.

- 4. File Names: Electronic submittal file names shall include the relevant specification section number followed by a description of the item submitted, as follows. Where possible, include the transmittal as the first page of the PDF instead of using multiple electronic files.
 - a. O&M file name: O&M.div26.contractor.YYYYMMDD
 - b. Transmittal file name: O&Mtransmittal.div26.contractor.YYYYMMDD
- 5. File Size: Files shall be transmitted via a pre-approved method. Larger files may require an alternative transfer method, which shall also be pre-approved.
- 6. Provide the Owner with an approved copy of the O&M manual on compact discs (CD), digital video discs (DVD), or flash drives with a permanently affixed label, printed with the title "Operation and Maintenance Instructions", title of the project and subject matter of disc/flash drive when multiple disc/flash drives are required.
- 7. All text shall be searchable.
- 8. Bookmarks shall be used, dividing information first by specification section, then systems, major equipment and finally individual items. All bookmark titles shall include the nomenclature used in the construction documents and shall be an active link to the first page of the section being referenced.
- C. Paper Copy Submittal Procedures:
 - 1. Once the electronic version of the manuals has been approved by the Architect/Engineer, one paper copies of the O&M manual shall be provided to the Owner. The content of the paper copies shall be identical to the corrected electronic copy.
 - 2. Binder Requirements: The Contractor shall submit O&M manuals in heavy duty, locking three ring binders. Incorporate clear vinyl sheet sleeves on the front cover and spine for slip-in labeling. "Peel and stick" labels are not acceptable. Sheet lifters shall be supplied at the front of each notebook. The three-ring binders shall be 1/2" thicker than initial material to allow for future inserts. If more than one notebook is required, label in consecutive order. For example; 1 of 2, 2 of 2. No other form of binding is acceptable.
 - 3. Binder Labels: Label the front and spine of each binder with "Operation and Maintenance Instructions", title of project, and subject matter.
 - 4. Index Tabs: Divide information by specification section, major equipment, or systems using index tabs. All tab titling shall be clearly printed under reinforced plastic tabs. All equipment shall be labeled to match the identification in the construction documents.
- D. Operation and Maintenance Instructions shall include:
 - 1. Title Page: Include title page with project title, Architect, Engineer, Contractor, all subcontractors, and major equipment suppliers, with addresses, telephone numbers, website addresses, email addresses and point of contacts. Website URLs and email addresses shall be active links in the electronic submittal.
 - 2. Table of Contents: Include a table of contents describing specification section, systems, major equipment, and individual items.
 - 3. Copies of all final <u>approved</u> shop drawings and submittals. Include Architect's/Engineer's shop drawing review comments. Insert the individual shop drawing directly after the Operation and Maintenance information for the item(s) in the review form.
 - 4. Copies of all factory inspections and/or equipment startup reports.
 - 5. Copies of warranties.
 - 6. Schematic wiring diagrams of the equipment that have been updated for field conditions. Field wiring shall have label numbers to match drawings.
 - 7. Dimensional drawings of equipment.
 - 8. Detailed parts lists with lists of suppliers.
 - 9. Operating procedures for each system.

- 10. Maintenance schedule and procedures. Include a chart listing maintenance requirements and frequency.
- 11. Repair procedures for major components.
- 12. Replacement parts and service material requirements for each system and the frequency of service required.
- 13. Instruction books, cards, and manuals furnished with the equipment.
- 14. Include record drawings of the one-line diagrams for each major system. The graphic for each piece of equipment shown on the one-line diagram shall be an active link to its associated Operation & Maintenance data.
- 15. Copies of all panel schedules in electronic Microsoft Excel spreadsheet (.xlsx) file. Each panelboard shall be a separate tab in the workbook.

3.06 INSTRUCTING THE OWNER'S REPRESENTATIVE

- A. Adequately instruct the Owner's designated representatives in the maintenance, care, and operation of the complete systems installed under this contract.
- B. Provide verbal and written instructions to the Owner's representatives by FACTORY PERSONNEL in the care, maintenance, and operation of the equipment and systems.
- C. The instructions shall include:
 - 1. Maintenance of equipment.
 - 2. Start-up procedures for all major equipment.
 - 3. Description of emergency system operation.
- D. Notify the Architect/Engineer of the time and place for the verbal instructions to be given to the Owner's representative so a representative can be present if desired.
- E. Minimum hours of instruction time for each item and/or system shall be as indicated in each individual specification section.
- F. Operating Instructions:
 - 1. Contractor is responsible for all instructions to the Owner's representatives for the electrical and specialized systems.
 - 2. If the Contractor does not have staff that can adequately provide the required instructions, the Contractor shall include in the bid an adequate amount to reimburse the Owner for the Architect/Engineer to perform these services.

3.07 RECORD DOCUMENTS

- A. The following paragraphs supplement Division 1 requirements.
- B. Maintain at the job site a separate and complete set of electrical drawings and specifications with all changes made to the systems clearly and permanently marked in complete detail.
- C. Mark drawings and specifications to indicate approved substitutions; Change Orders, and actual equipment and materials used. All Change Orders, RFI responses, Clarifications and other supplemental instructions shall be marked on the documents. Record documents that merely reference the existence of the above items are not acceptable. Should this Contractor fail to complete Record Documents as required by this contract, this Contractor shall reimburse Architect/Engineer for all costs to develop record documents that comply with this requirement. Reimbursement shall be made at the Architect/Engineer's hourly rates in effect at the time of work.
- D. Record changes daily and keep the marked drawings available for the Architect/Engineer's examination at any normal work time.
- E. Upon completing the job, and before final payment is made, give the marked-up drawings to the Architect/Engineer.
- F. Record actual routing of conduits exceeding 2 inches.

3.08 PAINTING

- A. Paint all equipment that is marred or damaged prior to the Owner's acceptance. Paint and color shall match original equipment paint and shall be obtained from the equipment supplier if available. All equipment shall have a finished coat of paint applied unless specifically allowed to be provided with a prime coat only.
- B. Equipment in finished areas that will be painted to match the room decor will be painted by others. Should this Contractor install equipment in a finished area after the area has been painted, the Contractor shall have the equipment and all its supports, hangers, etc., painted to match the room decor. Painting shall be performed as described in project specifications.
- C. Equipment cabinets, casings, covers, metal jackets, etc., located in equipment rooms or concealed spaces, shall be furnished in standard finish, free from scratches, abrasions, chippings, etc.
- D. Equipment in occupied spaces, or if standard to the unit, shall have a baked primer with baked enamel finish coat free from scratches, abrasions, chipping, etc. If color option is specified or is standard to the unit, verify with the Architect the color preference before ordering.
- E. After surfaces have been thoroughly cleaned and are free of oil, dirt or other foreign matter, paint all raceway and equipment with the following:
 - 1. Bare Metal Surfaces Apply one coat of metal primer suitable for the metal being painted. Finish with two coats of Alkyd base enamel paint.
 - 2. Plastic Surfaces Paint plastic surfaces with two coats of semi-gloss acrylic latex paint.

3.09 ADJUST AND CLEAN

- A. Thoroughly clean all equipment and systems prior to the Owner's final acceptance of the project.
- B. Clean all foreign paint, grease, oil, dirt, labels, stickers, etc. from all equipment.
- C. Remove all rubbish, debris, etc., accumulated during construction from the premises.

3.10 SPECIAL REQUIREMENTS

- A. Coordinate the installation of all equipment, controls, devices, etc., with other trades to maintain clear access area for servicing.
- B. Install all equipment to maximize access to parts needing service or maintenance. Review the final location, placement, and orientation of equipment with the Owner's representative prior to setting equipment.
- C. Installation of equipment or devices without regard to coordination of access requirements and confirmation with the Owner's representative will result in removal and reinstallation of the equipment at the Contractor's expense.
- D. Raceway and Cable Routing Restrictions: Raceways and cable are restricted from being routed in the following locations, unless serving the space or permitted by the authority having jurisdiction.
 - 1. Exit enclosures.
 - 2. Other areas restricted by code.

3.11 INDOOR AIR QUALITY (IAQ) MAINTENANCE FOR OCCUPIED FACILITIES UNDER CONSTRUCTION

- A. Within the Limits of Construction:
 - 1. The Electrical Contractor shall coordinate all work with the contractor responsible for IAQ.
 - 2. The means, methods and materials used by the Electrical Contractor shall be coordinated with the contractor responsible for IAQ and shall comply with the IAQ requirements set forth in Division 1 and Division 21/22/23 of these specifications.
- B. Outside the Limits of Construction:
 - 1. IAQ shall be the responsibility of the electrical contractor for work that is required outside the limits of construction.

- 2. The Electrical Contractor is responsible for the IAQ set forth in Division 1 and Division 21/22/23 of these specifications.
- 3. The Electrical Contractor shall review and coordinate all IAQ plans and procedures with the owner's IAQ representative.
- C. Contractors shall make all reasonable efforts to prevent construction activities from affecting the air quality of the occupied areas of the building or outdoor areas near the building. These measures shall include, but not be limited to:
 - General Contractor shall erect and maintain dust barriers throughout the construction work. These barriers shall be reasonably airtight and shall prevent entry into the construction zone by unauthorized persons. Reasonably airtight means construction equivalent to full-height temporary or permanent walls with joints taped or sealed, and shafts and other penetrations sealed as well as possible. Fire resistant polyethylene is acceptable; if flame spread/smoke developed ratings are demonstrated to conform to the applicable building codes and licensing acts.
 - 2. The Contractor shall continuously maintain the construction zone under a negative pressure of at least 0.01" w.g. minimum relative to all adjacent areas of the building.
 - a. Exhaust fans used for this purpose shall filter air and discharge it outdoors or to the least populated area adjacent to the construction work using negative air machines designed specifically for this purpose. All filtration for air recirculated back into the building shall be HEPA (99.97% DOP efficiency) for work adjacent to healthcare or elderly facilities. If no work is adjacent to these areas, 95% filtration is acceptable. Filtering air discharged to outdoors shall be accomplished with 30% filters.
 - b. If air is discharged outdoors, maintain all required distances to doors, windows, air intakes, etc.
 - c. If high levels of Volatile Organic Compounds (VOC's) or odors are released, activated carbon or equivalent filtration shall also be employed. Exhaust shall not discharge near doors, air intakes, pedestrians, gathering areas, or operable windows.
 - d. Adjusting existing air handling equipment to assist in pressure control is acceptable, if approved by the Owner and the authority having jurisdiction.
 - e. Seal return, exhaust, and supply air openings in or near the construction zone that serve existing air handling systems, and rebalance the systems for proper operation. If this is impractical, add filters at the intakes of sufficient cross sectional area to minimize the pressure drop and avoid the need for rebalancing.
 - f. Maintain pressure control one hour before and after all construction periods, and 24 hours per day in healthcare or elderly facilities.
 - 3. All contractors shall endeavor to minimize the amount of contaminants generated during construction. Methods to be employed shall include, but not be limited to:
 - a. Minimizing the amount of dust generated.
 - b. Reducing solvent fumes and VOC emissions.
 - c. Maintain good housekeeping practices, including sweeping and periodic dust and debris removal. There should be no visible haze in the air.
 - 4. Request that the Owner designate an IAQ representative.
 - 5. Review and receive approval from the Owner's IAQ representative for all IAQ-related construction activities and negative pressure containment plans.
 - 6. Inform the IAQ representative of all conditions that could adversely impact IAQ, including operations that will produce higher than normal dust production or odors.
 - 7. Schedule activities that may cause IAQ conditions that are not acceptable to the Owner's IAQ representative during unoccupied periods.
 - 8. Request copies of and follow all Owner's IAQ and infection control policies.

- 9. Unless no other access is possible, the entrance to construction site shall not be through the existing facility.
- 10. To minimize growth of infectious organisms, do not permit damp areas in or near the construction area to remain for over 24 hours.
- 11. In addition to the criteria above, provide measures as recommended in the SMACNA "IAQ Guidelines for Occupied Buildings under Construction".

3.12 SYSTEM STARTING AND ADJUSTING

- A. The electrical systems shall be complete and operating. System startup, testing, adjusting, and balancing to obtain satisfactory system performance is the responsibility of the Contractor. This includes all calibration and adjustment of electrical controls, balancing of loads, troubleshooting and verification of software, and final adjustments that may be needed.
- B. Complete all manufacturer-recommended startup procedures and checklists to verify proper equipment operation and does not pose a danger to personnel or property.
- C. All operating conditions and control sequences shall be tested during the start-up period. Testing all interlocks, safety shut-downs, controls, and alarms.
- D. The Contractor, subcontractors, and equipment suppliers shall have skilled technicians to ensure that all systems perform properly. If the Architect/Engineer is requested to visit the job site for trouble shooting, assisting in start-up, obtaining satisfactory equipment operation, resolving installation and/or workmanship problems, equipment substitution issues or unsatisfactory system performance, including call backs during the warranty period, through no fault of the design; the Contractor shall reimburse the Owner on a time and materials basis for services rendered at the Architect/Engineer's standard hourly rates in effect when the services are requested. The Contractor shall pay the Owner for services required that are product, installation or workmanship related. Payment is due within 30 days after services are rendered.

3.13 FIELD QUALITY CONTROL

- A. General:
 - 1. Conduct all tests required during and after construction. Submit test results in NETA format, or equivalent form, that shows the test equipment used, calibration date, tester's name, ambient test conditions, humidity, conductor length, and results corrected to 40°C.
 - 2. Supply necessary instruments, meters, etc., for the tests. Supply competent technicians with training in the proper testing techniques.
 - 3. All cables and wires shall be tested for shorts and grounds following installation and connection to devices. Replace shorted or grounded wires and cables.
 - 4. Any wiring device, electrical apparatus or luminaire, if grounded or shorted on any integral "live" part, shall have all defective parts or materials replaced.
 - 5. Test cable insulation of service and panel feeder conductors for proper insulation values. Tests shall include the cable, all splices, and all terminations. Each conductor shall be tested and shall test free of short circuits and grounds and have an insulation value not less than Electrical Code Standards. Take readings between conductors, and between conductors and ground.
 - 6. If the results obtained in the tests are not satisfactory, make adjustments, replacements, and changes as needed. Then repeat the tests, and make additional tests, as the Architect/Engineer or authority having jurisdiction deems necessary.
- B. Ground-Fault Equipment Performance Testing:
 - 1. Test: Perform ground-fault performance testing when system is installed. The test process shall use primary current injection per manufacturer instruction and procedures. Perform test for the following:
 - a. Outside branch circuits and feeders.
 - b. Code required.

- 2. Report: Provide copy of test result report with Operation and Maintenance manuals. Provide report to Authority Having Jurisdiction when requested.
- C. Other Equipment:
 - 1. Give other equipment furnished and installed by the Contractor all standard tests normally made to assure that the equipment is electrically sound, all connections properly made, phase rotation correct, fuses and thermal elements suitable for protection against overloads, voltage complies with equipment nameplate rating, and full load amperes are within equipment rating.
- D. If any test results are not satisfactory, make adjustments, replacements and changes as needed and repeat the tests and make additional tests as the Architect/Engineer or authority having jurisdiction deem necessary.
- E. Upon completion of the project, the Contractor shall provide amperage readings for all panelboards and switchboards and turn the results over to the Owner for "benchmark" amperages.

3.14 UTILITY REBATE

- A. Submit utility rebate forms, where offered at project location, with rebate items completed. Rebate may include lighting, lighting controls, variable speed drives, heat pumps, package terminal A/C, air conditioners, chillers, water heaters, programmable thermostats, and motors.
- B. Contractor must submit notification of any value engineering or product substitution that will affect the utility rebate amount prior to approval.

READINESS CERTIFICATION PRIOR TO FINAL JOBSITE OBSERVATION

To prevent the final job observation from occurring too early, we require that the Contractor review the completion status of the project and, by copy of this document, certify that the job is indeed ready for the final job observation. The following is a typical list of items that represent the degree of job completeness expected prior to your requesting a final job observation.

1. Penetrations of fire-rated construction fire sealed in accordance with specifications.

- 2. Electrical panels have typed circuit identification.
- 3. Per Section 26 0500, cable insulation test results have been submitted.
- 4. Operation and Maintenance manuals have been submitted as per Section 26 0500.
- 5. Bound copies of approved shop drawings have been submitted as per Section 26 0500.
- 6. Report of instruction of Owner's representative has been submitted as per Section 26 0500.
- 7. Fire alarm inspection and testing report has been submitted as per Sections 26 05 00 and 28 31 00.
- 8. Start-up reports from factory representative have been submitted as per Section 26 0500.

Accepted by:

Prime Contractor _____

By	Date
-,	

Upon Contractor certification that the project is complete and ready for a final job observation, we require the Contractor to sign this agreement and return it to the Architect/Engineer so that the final observation can be scheduled.

It is understood that if the Architect/Engineer finds the job not ready for the final observation and that additional trips and observations are required to bring the project to completion, the costs incurred by the Architect/Engineers for additional time and expenses will be deducted from the Contractor's contract retainage prior to final payment at the completion of the job.

SECTION 26 0503

THROUGH PENETRATION FIRESTOPPING

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. Through-Penetration Firestopping. All floors in the building are assumed to be fire rated and penetrations shall be treated as a 2-hr rated floor.

1.02 QUALITY ASSURANCE

- A. Manufacturer: Company specializing in manufacturing products specified in this Section.
- B. Installer: Individuals performing work shall be certified by the manufacturer of the system selected for installation.

1.03 REFERENCES

- A. UL 263 Fire Tests of Building Construction and Materials
- B. UL 723 Surface Burning Characteristics of Building Materials
- C. ANSI/UL 1479 Fire Tests of Through Penetration Firestops
- D. UL 2079 Tests for Fire Resistance of Building Joint Systems
- E. UL Fire Resistance Directory Through Penetration Firestop Systems (XHEZ)
- F. Intertek / Warnock Hersey Directory of Listed Products
- G. ASTM E84 Standard Test Method for Surface Burning Characteristics of Building Materials
- H. ASTM E814 Standard Test Method for Fire Tests of Through-Penetration Firestops
- I. The Building Officials and Code Administrators National Building Code
- J. 2015 International Building Code
- K. NFPA 5000 Building Construction Safety Code

1.04 DELIVERY, STORAGE, AND HANDLING

- A. Store, protect and handle products on site. Accept material on site in factory containers and packing. Inspect for damage. Protect from deterioration or damage due to moisture, temperature changes, contaminants, or other causes. Follow manufacturer's instructions for storage.
- B. Install material prior to expiration of product shelf life.

1.05 PERFORMANCE REQUIREMENTS

- A. General: For penetrations through the following fire-resistance-rated constructions, including both empty openings and openings containing penetrating items, provide through-penetration firestop systems that are produced and installed to resist spread of fire according to requirements indicated, resist passage of smoke and other gases, and maintain original fire-resistance rating of construction penetrated.
 - 1. Fire-resistance-rated walls including fire partitions, fire barriers, and smoke barriers.
 - 2. Fire-resistance-rated horizontal assemblies including floors, floor/ceiling assemblies, and ceiling membranes of roof/ceiling assemblies.
- B. Rated Systems: Provide through-penetration firestop systems with the following ratings determined per UL 1479:
 - 1. F-Rated Systems: Provide through-penetration firestop systems with F-ratings indicated, but not less than that equaling or exceeding fire-resistance rating of constructions penetrated.
- C. For through-penetration firestop systems exposed to light, traffic, moisture, or physical damage, provide products that, after curing, do not deteriorate when exposed to these conditions both during and after construction.
- D. For through-penetration firestop systems exposed to view, provide products with flame-spread and smoke-developed indexes of less than 25 and 450, respectively, as determined per ASTM E 84.

E. For through-penetration firestop systems in air plenums, provide products with flame-spread and smokedeveloped indexes of less than 25 and 50, respectively, as determined per ASTM E 84.

1.06 MEETINGS

- A. Pre-installation meeting: A pre-installation meeting shall be scheduled and shall include the Construction Manager, General Contractor, all Subcontractors associated with the installation of systems penetrating fire barriers, Firestopping Manufacturer's Representative, and the Owner.
 - 1. Review foreseeable methods related to firestopping work.
 - 2. Tour representative areas where firestopping is to be installed; inspect and discuss each type of condition and each type of substrate that will be encountered, and preparation to be performed by other trades.

1.07 WARRANTY

- A. Provide one year warranty on parts and labor.
- B. Warranty shall cover repair or replacement of firestop systems which fail in joint adhesion, cohesion, abrasion resistance, weather resistance, extrusion resistance, migration resistance, stain resistance, general durability, or appear to deteriorate in any manner not clearly specified by the manufacturer as an inherent quality of the material.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

- A. Products: Subject to compliance with requirements, provide one of the through-penetration firestop systems indicated for each application that are produced by one of the following manufacturers. All firestopping systems installed shall be provided by a single manufacturer.
 - 1. 3M; Fire Protection Products Division
 - 2. Hilti, Inc.
 - 3. RectorSeal Corporation, Metacaulk
 - 4. Tremco; Sealant/Weatherproofing Division
 - 5. Johns-Manville
 - 6. Specified Technologies Inc. (S.T.I.)
 - 7. Spec Seal Firestop Products
 - 8. AD Firebarrier Protection Systems
 - 9. Wiremold/Legrand: FlameStopper
 - 10. Dow Corning Corp.
 - 11. Fire Trak Corp.
 - 12. International Protective Coating Corp.
 - 13. HoldRite
 - 14. Engineer pre-approved equivalent

2.02 THROUGH PENETRATION FIRESTOP SYSTEMS

- A. Provide materials and systems classified by or listed by Intertek / Warnock Hersey to provide firestopping equal to time rating of construction being penetrated.
- B. All firestopping materials shall be free of asbestos, lead, PCB's, and other materials that would require hazardous waste removal.
- C. Firestopping shall be flexible to allow for normal penetrating item movement due to expansion and contraction.
- D. Provide firestopping systems capable of supporting floor loads where systems are exposed to possible floor loading or traffic.
- E. Provide firestopping systems allowing continuous insulation for all insulated pipes.
DOC ASP LUA A/C REPLACEMENT Anamosa, IA

- F. Provide firestopping systems classified by UL or listed by Intertek / Warnock Hersey for penetrations through all fire rated construction. Firestopping systems shall be selected from the UL or listed by Intertek / Warnock Hersey Fire Resistance Directory Category XHEZ based on substrate construction and penetrating item size and material and shall fall within the range of numbers listed:
 - 1. Combustible Framed Floors and Chase Walls 1 or 2 Hour Rated:
 - a. F Rating = Floor/Wall Rating
 - 2. Non-Combustible Framed Walls 1 or 2 Hour Rated:
 - a. F Rating = Wall Rating
 - 3. Concrete or Masonry Floors and Walls 1 or 2 Hour Rated:
 - a. F Rating = Wall/Floor Rating
- G. Any opening in walls or floors not covered by the listed series of numbers shall be coordinated with the firestopping manufacturer.
- H. Any openings in floors or walls not described in the UL or listed by Intertek / Warnock Hersey Fire Resistance Directory, or outlined in manufacturer's information shall be sealed in a manner agreed upon by the Firestopping Manufacturer, Owner, and the Authority Having Jurisdiction.

PART 3 - EXECUTION

3.01 EXAMINATION

- A. Ensure all surfaces that contact seal materials are free of dirt, dust, grease, oil, rust, or loose materials. Clean and repair surfaces as required. Remove laitance and form-release agents from concrete.
- B. Ensure substrate and penetrating items have been permanently installed prior to installing firestopping systems. Ensure penetrating items have been properly spaced and have proper clearance prior to installing firestopping systems.
- C. Surfaces to which sealing materials are to be installed must meet the selected UL or Intertek / Warnock Hersey system substrate criteria.
- D. Prime substrates where recommended in writing by through-penetration firestop system manufacturer. Confine primer to area of bond.

3.02 INSTALLATION

- A. In existing construction, provide firestopping of openings prior to and after installation of penetrating items. Remove any existing coatings on surfaces prior to firestopping installation. Temporary firestopping shall consist of packing openings with fire resistant mineral wool for the full thickness of substrate, or an alternate method approved by the Authority Having Jurisdiction. All openings shall be temporarily firestopped immediately upon their installation and shall remain so until the permanent UL or listed by Intertek / Warnock Hersey listed firestopping system is installed.
- B. Install penetration seal materials in accordance with printed instructions of the UL or Intertek / Warnock Hersey Fire Resistance Directory and with the manufacturer's printed application instructions.
- C. Install dams as required to properly contain firestopping materials within openings and as required to achieve required fire resistance rating. Remove combustible damming after appropriate curing.

3.03 CLEANING AND PROTECTING

A. Clean excess fill materials adjacent to openings as Work progresses by methods and with cleaning materials that are approved in writing by through-penetration firestop system manufacturers and that do not cause damage.

B. Provide final protection and maintain conditions during and after installation that ensure that throughpenetration firestop systems are without damage or deterioration at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, remove damaged or deteriorated throughpenetration firestop systems immediately and install new materials to produce systems complying with specified requirements.

3.04 INSPECTION

- A. All penetrations shall be inspected by the manufacturer's representative to ensure proper installation.
- B. Access to firestop systems shall be maintained for examination by the Authority Having Jurisdiction at their request.
- C. Proceed with enclosing through-penetration firestop system with other construction only after inspection reports are issued and firestop installations comply with requirements.
- D. The Contractor shall allow for visual destructive review of 5% of installed firestop systems (minimum of one) to prove compliance with specifications and manufacturer's instructions and details. Destructive system removal shall be performed by the Contractor and witnessed by the Architect/Engineer and manufacturer's factory representative. The Architect/Engineer shall have sole discretion of which firestop system installations will be reviewed. The Contractor is responsible for all costs associated with this requirement including labor and material for removing and replacing the installed firestop system. If any firestop system is found to not be installed per manufacturer's specific instructions and details, all firestop systems are subject to destructive review and replacement at the Architect/Engineer's discretion and the Contractor's expense.

SECTION 26 0505

ELECTRICAL DEMOLITION FOR REMODELING

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. Electrical demolition

PART 2 - PRODUCTS

2.01 MATERIALS AND EQUIPMENT

A. Materials and equipment for patching and extending work shall be as specified in individual Sections.

PART 3 - EXECUTION

3.01 EXAMINATION

- A. THE DRAWINGS ARE INTENDED TO INDICATE THE SCOPE OF WORK REQUIRED AND DO NOT INDICATE EVERY BOX, CONDUIT, OR WIRE THAT MUST BE REMOVED. THE CONTRACTOR SHALL VISIT THE SITE PRIOR TO SUBMITTING A BID AND VERIFY EXISTING CONDITIONS.
- B. Where walls, ceilings, structures, etc., are indicated as being removed on general or electrical drawings, the Contractor shall be responsible for the removal of all electrical equipment, devices, fixtures, raceways, wiring, systems, etc., from the removed area.
- C. Where ceilings, walls, structures, etc., are temporarily removed and replaced by others, this Contractor shall be responsible for the removal, storage, and replacement of equipment, devices, fixtures, raceways, wiring, systems, etc.
- D. Where mechanical or technology equipment is indicated as being removed on electrical, mechanical, or technology drawings, the Contractor shall be responsible for disconnecting the equipment and removing all starters, VFD, controllers, electrical equipment, raceways, wiring, etc. associated with the device.
- E. Verify that abandoned wiring and equipment serve only abandoned equipment or facilities. Extend conduit and wire to facilities and equipment that will remain in operation following demolition. Extension of conduit and wire to equipment shall be compatible with the surrounding area. Extended conduit and conductors to match existing size and material.
- F. Coordinate scope of work with all other Contractors and the Owner at the project site. Schedule removal of equipment and electrical service to avoid conflicts.
- G. Bid submittal shall mean the Contractor has visited the project site and has verified existing conditions and scope of work.

3.02 PREPARATION

- A. The Contractor shall obtain approval from the Owner before turning off power to circuits, feeders, panels, etc. Coordinate all outages with Owner.
- B. Provide temporary wiring and connections to maintain existing systems in service during construction. When work must be performed on energized equipment or circuits, use personnel experienced in such operations. Assume all equipment and systems must remain operational unless specifically noted otherwise on drawings.
- C. Disconnect electrical systems in walls, floors, structures, and ceilings scheduled for removal.
- D. Existing Fire Alarm System: Maintain existing system in service until new system is accepted. Disable system only to make switchovers and connections. Obtain permission from Owner at least 48 hours before partially or completely disabling system. Minimize outage duration. Make temporary connections to maintain service in areas adjacent to work area. Provide a watchman to make required premise observations during all outages, requirements as dictated by codes and Owner's insurance carrier.

3.03 DEMOLITION AND EXTENSION OF EXISTING ELECTRICAL WORK

- A. Demolish and extend existing electrical work under provisions of Division 1 of Specifications and this Section.
- B. Remove, relocate, and extend existing installations to accommodate new construction.

- C. Remove abandoned wiring and raceway to source of supply. Existing conduit in good condition may be reused in place by including an equipment ground conductor in reused conduit. Reused conduit and boxes shall have supports revised to meet current codes. Relocating conduit shall not be allowed.
- D. Remove exposed abandoned raceway, including abandoned raceway above accessible ceiling finishes. Cut raceway flush with walls and floors, and patch surfaces. Remove all associated clamps, hangers, supports, etc. associated with raceway removal.
- E. Disconnect and remove outlets and devices that are to be demolished. Remove conduit, supports, and conductors back to source. Devices' back box and conduit mounted in walls that are to remain can be abandoned in place. Provide appropriate cover plate for all abandoned back boxes. Cover plates shall match existing plates used in the adjacent areas.
- F. Disconnect and remove abandoned panelboards and distribution equipment.
- G. Disconnect and remove electrical devices and equipment serving utilization equipment that has been removed.
- H. Disconnect and remove abandoned luminaires. Remove brackets, stems, hangers, and other accessories. Ballasts in light fixtures installed prior to 1980 shall be incinerated in EPA approved incinerator or disposed of in EPA certified containers and deposited in an EPA landfill certified for PCB disposal or recycled by permitted ballast recycler. Punctured or leaking ballasts must be disposed of according to Federal Regulations under the Toxic Substance Control Act. Provide Owner and Architect/Engineer with a Certificate of Destruction to verify proper disposal.
- I. Repair adjacent construction and finishes damaged during demolition and extension work. Patch openings to match existing surrounding finishes.
- J. Maintain access to existing electrical installations that remain active. Modify installation or provide junction boxes and access panel as appropriate.
- K. Extend existing installations using materials and methods compatible with existing electrical installations, or as specified. Extended conduit and conductors to match existing size and material.
- L. HID and fluorescent lamps, determined by the Toxicity Characteristic Leachate procedure (TCLP), to be hazardous waste shall be disposed of in an EPA-permitted hazardous waste disposal facility or by a permitted lamp recycler.
- M. Regulatory Requirements: Comply with governing EPA notification regulations before beginning demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.
- N. Floor slabs may contain conduit systems. This Contractor is responsible for taking any measures required to ensure no conduits or other services are damaged. This includes X-ray or similar nondestructive means. Where conduit is in concrete slab, cut conduit flush with floor, pull out conductors, and plug conduit ends.
- O. This Contractor is responsible for all costs incurred in repair, relocations, or replacement of any cables, conduits, or other services if damaged without proper investigation.

3.04 EXISTING ENCLOSURES - NEW EQUIPMENT

- A. Existing enclosures may be reused to house new equipment including branch panels, industrial controls, and similar systems pending documented verification of the following provided with the applicable new equipment submittals.
 - 1. New equipment or panelboard is listed for the existing enclosure or application.
 - 2. Existing enclosure and new equipment is field evaluated by the manufacturer or nationally recognized testing laboratory for the available fault current, condition, and application.
 - 3. Authority Having Jurisdiction (AHJ) approval.

3.05 CLEANING AND REPAIR

- A. Clean and repair existing materials and equipment that remain or are to be reused.
- B. Panelboards: Clean exposed surfaces and check tightness of electrical connections. Replace damaged circuit breakers and provide closure plates for vacant positions. Provide typed circuit directory showing revised circuiting arrangement.
- C. ELECTRICAL ITEMS (E.G., LIGHTING FIXTURES, RECEPTACLES, SWITCHES, CONDUIT, WIRE, ETC.) REMOVED AND NOT RELOCATED REMAIN THE PROPERTY OF THE OWNER. CONTRACTOR SHALL PLACE ITEMS RETAINED BY THE OWNER IN A LOCATION COORDINATED WITH THE OWNER. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE DISPOSAL OF MATERIAL THE OWNER DOES NOT WANT.

3.06 INSTALLATION

A. Install relocated materials and equipment under the provisions of Division 1 of Specifications.

SECTION 26 0513 WIRE AND CABLE

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Building wire
- B. Cabling for remote control, signal, and power limited circuits

1.02 RELATED WORK

A. Section 26 0553 - Electrical Identification: Refer to electrical identification for color and identification labeling requirements.

1.03 REFERENCES

- A. ASTM B800-05 Standard Specification for 8000 Series Aluminum Alloy Wire Electrical Purposes-Annealed and Intermediate Tempered.
- B. ASTM B801-07 Standard Specification for Concentric-Lay-Stranded Conductors of 8000 Series Aluminum Alloy for Subsequent Covering or Insulation
- C. NEMA WC 70 Power Cables Rated 2,000V or Less for the Distribution of Electrical Energy
- D. NFPA 70 National Electrical Code (NEC)
- E. UL 1581 Standard for Electrical Wires, Cables, and Flexible Cords

PART 2 - PRODUCTS

2.01 BUILDING WIRE

- A. Feeders and Branch Circuits 8 AWG and larger: Copper, stranded conductor, 600-volt insulation, THHN/THWN or XHHW-2.
- B. Feeders and Branch Circuits 8 AWG and larger in Underground Conduit: Copper, stranded conductor, 600-volt insulation, THWN or XHHW-2.
- C. Feeders and Branch Circuits 10 AWG and Smaller: Copper, solid or stranded conductor, 600-volt insulation, THHN/THWN, unless otherwise noted on the drawings.
- D. Motor Feeder from Variable Frequency Drives: Copper conductor, 600-volt XHHW-2 insulation, stranded conductor, unless otherwise noted on the drawings.
- E. Control Circuits: Copper, stranded conductor 600-volt insulation, THHN/THWN.
- F. Each 120-volt branch circuit shall have a dedicated neutral conductor. Neutral conductors shall be considered current-carrying conductors for wire derating.

2.02 CABLING FOR REMOTE CONTROL, SIGNAL, AND POWER LIMITED CIRCUITS

- A. Wire for the following specialized systems shall be as designated on the drawings, or elsewhere in these specifications. If not designated on the drawings or specifications, the system manufacturer's recommendations shall be followed.
 - 1. Fire alarm
 - 2. Low voltage switching and lighting control
 - 3. Other specialized cabling, signal, and power limited cabling. Refer to the appropriate Division 23, 27, or 28 requirements; including, but not limited, to the following:
 - a. Building Automation Systems and Controls, Division 23.
- B. Control Cable for Class 1 Remote Control and Signal Circuits: Copper conductor, 600-volt insulation, rated 60°C, individual conductors twisted together, shielded, and covered with a PVC jacket.
- C. Control Cable for Class 2 or Class 3 Remote Control and Signal Circuits: Copper conductor, 300-volt insulation, rated 60°C, individual conductors twisted together, shielded, and covered with a PVC jacket; UL listed.

D. Plenum Cable for Class 2 or Class 3 Remote Control and Signal Circuits: Copper conductor, 300-volt insulation, rated 60°C, individual conductors twisted together, shielded, and covered with a nonmetallic jacket; UL listed for use in air handling ducts, hollow spaces used as ducts, and plenums.

PART 3 - EXECUTION

3.01 WIRE AND CABLE INSTALLATION SCHEDULE

- A. Above Accessible Ceilings:
 - 1. Building wire shall be installed in raceway.
- B. All Other Locations: Building wire in raceway.
- C. Above Grade: All conductors installed above grade shall be type "THHN".
- D. Underground or In Slab: All conductors shall be type "THWN".
- E. Low Voltage Cable (less than 100 volts): Low voltage cable shall be installed in raceway.

3.02 CONTRACTOR CHANGES

- A. The basis of design is copper conductors installed in raceway based on ambient temperature of 30°C, NEC Table 310.16 (2011 2017 edition 310.15(B)(16)). The Contractor shall be responsible for derating and sizing conductors and conduits to equal or exceed the ampacity of the basis of design circuits, if he/she chooses to use methods or materials other than the basis of design.
- B. Conductor length(s) listed on plans and schedules. The drawings are diagrammatic with intent to convey the components of the electrical distribution system. Conductor length(s) when listed on plans and schedules are for engineering calculation purposes. Conductor length(s) shall NOT be used for bidding purposes.
- C. Record drawing shall include the calculations and sketches.

3.03 GENERAL WIRING METHODS

- A. Use no wire smaller than 12 AWG for power and lighting circuits, and no smaller than 14 AWG for control wiring.
- B. Use no wire smaller than 18 AWG for low voltage control wiring below 100 volts.
- C. Use 10 AWG conductor for 20 ampere, 120-volt branch circuit home runs longer than 75 feet .
- D. The ampacity of multiple conductors in one conduit shall be derated per the Electrical Code. In no case shall more than 4 conductors be installed in one conduit to such loads as motors larger than 1/4 HP, panelboards, motor control centers, etc.
- E. Where installing parallel feeders, place an equal number of conductors for each phase of a circuit in same raceway or cable.
- F. Splice only in junction or outlet boxes.
- G. Neatly train and lace wiring inside boxes, equipment, and panelboards.
- H. Make conductor lengths for parallel circuits equal.
- I. All conductors shall be continuous in conduit from last outlet to their termination.
- J. Terminate all spare conductors on terminal blocks, and label the spare conductors.
- K. Cables or wires shall not be laid out on the ground before pulling.
- L. Cables or wires shall not be dragged over earth or paving.
- M. Care shall be taken so as not to subject the cable or wire to high mechanical stresses that would cause damage to the wire and cable.
- N. At least six (6)-inch loops or ends shall be left at each outlet for installation connection of luminaires or other devices.
- O. All wires in outlet boxes not connected to fixtures or other devices shall be rolled up, spliced if continuity of circuit is required, and insulated.

3.04 WIRING INSTALLATION IN RACEWAYS

- A. Pull all conductors into a raceway at the same time. Use UL listed wire pulling lubricant for pulling 4 AWG and larger wires.
- B. Install wire in raceway after interior of building has been physically protected from the weather and all mechanical work likely to injure conductors has been completed.
- C. Pulling shall be continuous without unnecessary stops and starts with wire or cable only partially through raceway.
- D. Where reels of cable or wire are used, they shall be set up on jacks close to the point where the wire or cable enters the conduit or duct so that the cable or wire may be unreeled and run into the conduit or duct with a minimum of change in the direction of the bend.
- E. Conductors shall not be pulled through conduits until plastering or masonry work is completed and conduits are free from moisture. Care shall be taken so that long pulls of wire or pulls around several bends are not made where the wire may be permanently stretched and the insulation damaged.
- F. Only nylon rope shall be permitted to pull cables into conduit and ducts.
- G. Completely and thoroughly swab raceway system before installing conductors.
- H. Conductor Supports in Vertical Raceways:
 - 1. Support conductors in vertical raceways in accordance with the Electrical Code Spacing of Conductors Supports.
 - 2. Supports shall be of insulated wedge type (OZ Gedney Type S, or equal) and installed in a tapered insulated bushing fitting or a metal woven mesh with a support ring that fits inside conduit fitting installed in an accessible junction box (Hubbell Kellems support grip or equal).

3.05 CABLE INSTALLATION

A. Use suitable cable fittings and connectors.

3.06 FIRE-RATED CABLE AND ASSEMBLY INSTRUCTIONS

- A. Terminations of the fire-rated cable must be outside of the fire zone.
- B. Fire-rated cable shall be installed according to the manufacturer's instructions, recommendations, and UL listing.
- C. Route fire-rated cable and assemblies separate from other feeders and distribution. Install cable and assemblies in locations protected from physical damage.
- D. Refer to Electrical Identification Section 26 0553 for specific identification requirements.

3.07 WIRING CONNECTIONS AND TERMINATIONS

- A. Splice and tap only in accessible junction boxes.
- B. Use solderless, tin-plated copper, compression terminals (lugs) applied with circumferential crimp for conductor terminations, 8 AWG and larger.
- C. Use solderless, tin-plated, compression terminals (lugs) applied with indenter crimp for copper conductor terminations, 10 AWG and smaller.
- D. Use solderless pressure connectors with insulating covers for copper wire splices and taps, 8 AWG and smaller. For 10 AWG and smaller, use insulated spring wire connectors with plastic caps.
- E. Use compression connectors applied with circumferential crimp for conductor splices and taps, 6 AWG and larger. Tape uninsulated conductors and connectors with electrical tape to 150 percent of the insulation value of conductor. Cold shrink connector insulator with 1kV rating shall be used in damp and wet locations.
- F. Thoroughly clean wires before installing lugs and connectors.
- G. Make splices, taps and terminations to carry full ampacity of conductors without perceptible temperature rise.

- H. Phase Sequence: All apparatus shall be connected to operate in the phase sequence A-B-C representing the time sequence in which the phase conductors so identified reach positive maximum voltage.
- I. As a general rule, applicable to switches, circuit breakers, starters, panelboards, switchgear and the like, the connections to phase conductors are intended thus:
 - 1. Facing the front and operating side of the equipment, the phase identification shall be:
 - a. Left to Right A-B-C
 - b. Top to Bottom A-B-C
- J. Connection revisions as required to achieve correct rotation of motors shall be made at the load terminals of the starters or disconnect switches.

3.08 FIELD QUALITY CONTROL

- A. Field inspection and testing will be performed under provisions of Division 1.
- B. Building Wire and Power Cable Testing: Perform an insulation-resistance test on each conductor with respect to ground and adjacent conductors. Test shall be made by means of a low-resistance ohmmeter, such as a "Megger". The applied potential shall be 500 volts dc for 300 volt rated cable and 1000 volts dc for 600 volt rated cable. The test duration shall be one minute. Insulation resistance must be greater than 100 mega-ohm for 600 volt and 25 mega-ohm for 300 volt rated cables per NETA Acceptance Testing Standard. Verify uniform resistance of parallel conductors.
- C. Inspect wire and cable for physical damage and proper connection.
- D. Torque test conductor connections and terminations to manufacturer's recommended values.
- E. Perform continuity test on all power and equipment branch circuit conductors. Verify proper phasing connections.
- F. Protection of wire and cable from foreign materials:
 - It is the Contractor's responsibility to provide adequate physical protection to prevent foreign material application or contact with any wire or cable type. Foreign material is defined as any material that would negatively impact the validity of the manufacturer's performance warranty. This includes, but is not limited to, overspray of paint (accidental or otherwise), drywall compound, or any other surface chemical, liquid, or compound that could come in contact with the cable, cable jacket, or cable termination components.
- G. Overspray of paint on any wire or cable will not be accepted. It shall be the Contractor's responsibility to replace any component containing overspray, in its entirety, at no additional cost to the project. Cleaning of the cables with harsh chemicals is not allowed.

SECTION 26 0526 GROUNDING AND BONDING

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Equipment grounding system
- B. Bonding system

1.02 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in Electrical Code, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with UL 467 Grounding and Bonding Equipment.
- C. Comply with Electrical Code; for overhead-line construction and medium-voltage underground construction, comply with IEEE/ANSI C2 National Electrical Safety Code (NESC).

1.03 REFERENCES

A. NFPA 70 - National Electrical Code (NEC)

1.04 SUMMARY

A. This section includes grounding of electrical systems and equipment. Grounding requirements specified in this Section may be supplemented by special requirements of systems described in other Sections.

PART 2 - PRODUCTS

2.01 GROUNDING CONDUCTORS

- A. For insulated conductors, comply with Division 26 Section 26 0513 "Wire and Cable".
- B. Material: Copper.
- C. Equipment Grounding Conductors: Insulated. Refer to Section 26 0553 for insulation color.
- D. Underground Conductors: Bare, tinned, stranded, unless otherwise indicated.
- E. Copper Bonding Conductors: As follows:
 - 1. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG copper conductor, 1/4 inch in diameter.
 - 2. Bonding Conductor: No. 4 or No. 6 AWG, stranded copper conductor.
 - 3. Bonding Jumper: Bare copper tape, braided bare copper conductors, terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
 - 4. Tinned Bonding Jumper: Tinned-copper tape, braided copper conductors, terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

2.02 CONNECTOR PRODUCTS

- A. Comply with UL 467; listed for use for specific types, sizes, and combinations of conductors and connected items.
- B. Connectors: Hydraulic compression type, in kit form, and selected per manufacturer's written instructions.
- C. Bolted Connectors: Bolted-pressure-type connectors.

PART 3 - EXECUTION

3.01 CONNECTIONS

- A. General: Make connections so galvanic action or electrolysis possibility is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact will be galvanically compatible.
 - 1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer to order of galvanic series.

- 2. Make connections with clean, bare metal at points of contact.
- 3. Make aluminum-to-steel connections with stainless-steel separators and mechanical clamps.
- 4. Make aluminum-to-galvanized steel connections with tin-plated copper jumpers and mechanical clamps.
- 5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.
- B. Compression-Type Connections: Use hydraulic compression tools to provide correct circumferential pressure for compression connectors. Use tools and dies recommended by connector manufacturer. Provide embossing die code or other standard method to make a visible indication that a connector has been adequately compressed on grounding conductor.
- C. Equipment Grounding Conductor Terminations: For No. 8 AWG and larger, use pressure-type grounding lugs. No. 10 AWG and smaller grounding conductors may be terminated with winged pressure-type connectors.
- D. Noncontact Metal Raceway Terminations: If metallic raceways terminate at metal housings without mechanical and electrical connection to housing, terminate each conduit with a grounding bushing. Connect grounding bushings with a bare grounding conductor to grounding bus or terminal in housing. Bond electrically non-continuous conduits at entrances and exits with grounding bushings and bare grounding conductors, unless otherwise indicated.
- E. Connections at back boxes, junction boxes, pull boxes, and equipment terminations: The equipment grounding conductor(s) associated with all circuits in the box shall be connected together and to the box using a suitable grounding screw. The removal of the respective receptacle, luminaire, or other device served by the box shall not interrupt the grounding continuity. The connection to the non-metallic boxes shall be made to any metallic fitting or device requiring grounding.
- F. Tighten screws and bolts for grounding and bonding connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A.
- G. Moisture Protection: If insulated grounding conductors are connected to ground rods or grounding buses, insulate entire area of connection and seal against moisture penetration of insulation and cable.

3.02 INSTALLATION

- A. Use only copper conductors for both insulated and bare grounding conductors in direct contact with earth, concrete, masonry, crushed stone, and similar materials.
- B. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage. Each grounding conductor that passes through a below grade wall must be provided with a waterstop.
- C. Bonding Straps and Jumpers: Install so vibration by equipment mounted on vibration isolation hangers and supports is not transmitted to rigidly mounted equipment. Use exothermic-welded connectors for outdoor locations, unless a disconnect-type connection is required; then use a bolted clamp. Bond straps directly to the basic structure, taking care not to penetrate any adjacent parts. Install straps only in locations accessible for maintenance.
- D. In raceways, use insulated equipment grounding conductors.

3.03 EQUIPMENT GROUNDING SYSTEM

- A. Comply with Electrical Code, for types, sizes, and quantities of equipment grounding conductors, unless specific types, larger sizes, or more conductors than required by Electrical Code are indicated.
- B. Install equipment grounding conductors in all feeders and circuits. Terminate each end on a grounding lug or bus.
- C. Nonmetallic Raceways: Install an equipment grounding conductor in nonmetallic raceways unless they are designated for telephone or data cables.

3.04 BONDING SYSTEM

- A. At building expansion joints, provide flexible bonding jumpers to connect to columns or beams on each side of the expansion joint.
- B. Exterior Metallic Pull and Junction Box Covers, Metallic Hand Rails: Bond to grounding system using flexible grounding conductors.
- C. Equipment Circuits: Install a bonding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners, dampers, and heaters. Bond conductor to each unit and to air duct. Bond interior metal piping systems and metal air ducts to equipment grounding conductors of associated pumps, fans, blowers, electric heaters, and air cleaners. Use braided-type bonding straps or copper conductor sized equal to the equipment grounding conductor.
- D. Equipment Ground Conductor Continuity: All spliced equipment grounding conductors in junction boxes, cabinets, and distribution equipment shall be connected together and bonded to the metal enclosure.
- E. Remote control, signaling, and fire alarm circuits shall be bonded in accordance with the most recent version of the National Electric Code.

3.05 FIELD QUALITY CONTROL

A. Inspect grounding and bonding system conductors and connections for tightness and proper installation.

SECTION 26 0527 SUPPORTING DEVICES

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Conduit and Equipment Supports
- B. Fastening Hardware

1.02 QUALITY ASSURANCE

A. Support systems shall be adequate for weight of equipment and conduit, including wiring, which they carry.

1.03 REFERENCES

A. UL 62275 - Cable Management Systems - Cables Ties for Electrical Installations

PART 2 - PRODUCTS

2.01 MANUFACTURERS

- A. Allied Support Systems
- B. Cooper B-Line
- C. Erico, Inc.
- D. Hilti
- E. Power Fasteners
- F. Orbit Industries
- G. Engineer pre-approved equivalent

2.02 MATERIAL

- A. Support Channel: Hot-dip galvanized for wet/damp locations; painted steel for interior/dry locations. All field cut ends shall be touched up with matching finish to inhibit rusting.
- B. Hardware: Corrosion resistant.
- C. Anchorage and Structural Attachment Components:
 - 1. Strength: Defined in reports by ICBO Evaluation Service or another agency acceptable to Authorities Having Jurisdiction.
 - a. Structural Safety Factor: Strength in tension and shear of components used shall be at least two times the maximum seismic forces to which they will be subjected.
 - 2. Through Bolts: Structural type, hex head, high strength. Comply with ASTM F3125/F3125M Standard Specification for High Strength Structural Bolts and Assemblies.
 - 3. Welding Lugs: Comply with MSS-SP-69, Type 57.
 - 4. Beam clamps for Steel Beams and Joists: Double sided or concentric open web joist hangars. Single-sided type is not acceptable.
 - 5. Bushings for Floor-Mounted Equipment Anchors: Neoprene units designed for seismically rated rigid equipment mountings, and matched to the type and size of anchor bolts and studs used.
 - 6. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for seismically rated rigid equipment mountings, and matched to the type and size of attachment devices used.
 - 7. Concrete Anchors: Fasten to concrete using cast-in or post-installed anchors designed per the requirements of Appendix D of ACI 318-14. Post-installed anchors shall be qualified for use in cracked concrete by ACI-355.2.

- 8. Masonry Anchors: Fasten to concrete masonry units with expansion anchors or self-tapping masonry screws. For expansion anchors into hollow concrete block, use sleeve-type anchors designed for the specific application. Do not fasten in masonry joints. Do not use powder actuated fasteners, wooden plugs, or plastic inserts.
- D. Conduit Sleeves and Lintels:
 - 1. Each Contractor shall provide, to the General Contractor for installation, lintels for all openings required for the Contractor's work in masonry walls and conduit sleeves for floors, unless specifically shown as being by others.
 - 2. Lintels:
 - a. Lintels in non-bearing masonry wall openings can be sized in accordance with the note below. Lintels that occur in existing bearing walls are to be sized according to similar conditions and spans in the new construction and lintel schedule. Bottom plate size shall be a minimum of 3/8" thick. The width of the plate shall be 3/4" less than the field verified wall thickness. The plate shall be the full length of the lintel member. Lintels are not required over openings that are 12" wide or less and at least 1 course below the top of the wall.
 - b. All lintels shall have a minimum of 8" end bearing.
 - c. All lintels in exterior wall construction shall be hot-dip galvanized.
 - d. For all openings not otherwise detailed or scheduled, minimum lintels shall be for each 4 inch of masonry width:
 - 1) 0 to 2'-0" span: 5/16" plate (3/4" less than wall width)
 - 2) 2'-0" to 4'-0" span: L 3 1/2 x 3 1/2 x 1/4
 - 3) 4'-0" to 6'-0" span: L4 x 3 1/2 x 5/16 (llv)
 - 4) 6'-0" to 8'-0" span: L5 x 3 1/2 x 5/16 (llv)
 - e. All angles that are back to back shall be welded top and bottom 3" at 12" minimum.
 - 3. Fabricate all lintels from structural steel shapes or as indicated on the drawings. All lintels and grouped wall openings shall be approved by the Architect or Structural Engineer.
 - 4. Fabricate all sleeves from standard weight black steel pipe. Provide continuous sleeve. Cut or split sleeves are not acceptable. Sleeves through concrete walls may be high density polyethylene pipe penetration sleeve with a water stop collar, suitable for use with Link-Seal mechanical seals. Century-Line Model CS.
 - 5. Sleeves through the floors on exposed risers shall be flush with the ceiling, with planed squared ends extending 1" above the floor in unfinished areas, and flush with the floor in finished areas, to accept spring closing floor plates.
 - 6. Sleeves shall not penetrate structural members without approval from the Structural Engineer.
 - 7. Openings through unexcavated floors and/or foundation walls below the floor shall have a smooth finish with sufficient annular space around material passing through opening so slight settling will not place stress on the material or building structure.
 - 8. Install all sleeves concentric with conduits. Secure sleeves in concrete to wood forms. This Contractor is responsible for sleeves dislodged or moved when pouring concrete.
 - 9. Where conduits rise through concrete floors that are on earthen grade, provide 3/4" resilient expansion joint material (asphalt and cork) wrapped around the pipe, the full depth of concrete, at the point of penetration. Secure to prevent shifting during concrete placement and finishing.
 - 10. Size sleeves large enough to allow expansion and contraction movement.
- E. Truss and Joist Support System: Provided the installation complies with all loading requirements of truss and joist manufacturers, the following practices are acceptable:
 - 1. Loads of 100 lbs. or less may be attached anywhere along the top or bottom chords of trusses or joists with a minimum 3' spacing between loads.

- 2. Loads greater than 100 lbs. must be hung concentrically and may be hung from top or bottom chord, provided one of the following conditions is met:
 - a. The hanger is attached within 6" from a web/chord joint.
 - b. Additional L2x2x1/4 web reinforcement is installed per manufacturer's requirements.
- 3. It is prohibited to cantilever a load using an angle or other structural component that is attached to a truss or joist in such a fashion that a torsional force is applied to that structural member.
- 4. If conditions cannot be met, coordinate installation with truss or joist manufacturer and contact Architect/Engineer.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Fasten hanger rods, conduit clamps, and outlet and junction boxes to building structure using expansion anchors in concrete and beam clamps on structural steel.
- B. Trapeze support installation: Cut hanger rods back at trapeze supports so they do not extend more than 3/4" below bottom face of lowest fastener and blunt any sharp edges.
- C. Use toggle bolts or hollow wall fasteners in hollow masonry, plaster, or gypsum board partitions and walls; expansion anchors or preset inserts in solid masonry walls; self-drilling anchors or expansion anchor on concrete surfaces; sheet metal screws in sheet metal studs; and wood screws in wood construction.
- D. Do not fasten supports to ceiling systems, piping, ductwork, mechanical equipment, or conduit, unless otherwise noted.
- E. Do not use powder-actuated anchors without specific permission.
- F. Do not drill structural steel members.
- G. Fabricate supports from structural steel or steel channel, rigidly welded or bolted to present a neat appearance. Use hexagon head bolts with spring lock washers under all nuts.
- H. In wet locations and on all building floors below exterior earth grade install free-standing electrical equipment on concrete pads.
- I. Install cabinets and panelboards with minimum of four anchors. Provide steel channel supports to stand surface-mounted panelboard or cabinet one inch off wall.
- J. Do not exceed 25 lbs. per hanger and a minimum spacing of 2'-0" on center when attaching to metal roof decking (excludes concrete on metal deck). This 25 lbs. load and 2'-0" spacing include adjacent electrical and mechanical items hanging from deck. If the hanger restrictions cannot be achieved, supplemental framing off steel framing will need to be added.
- K. Refer to Section 26 0533 for special conduit supporting requirements.

3.02 FINISH

- A. Prime coat exposed steel hangers and supports. Hangers and supports in crawl spaces, pipe shafts, and above suspended ceiling spaces are not considered exposed.
- B. Trim all ends of exposed field fabricated steel hangers, slotted channel and threaded rod to within 1" of support or fastener to eliminate potential injury to personnel unless shown otherwise on the drawings. Smooth ends and install elastomeric insulation with two coats of latex paint if exposed steel is within 6'-6" of finish floor and presents potential injury to personnel.

SECTION 26 0533 CONDUIT AND BOXES

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Rigid metallic conduit and fittings (RMC)
- B. Electrical metallic tubing and fittings (EMT)
- C. Flexible metallic conduit and fittings (FMC)
- D. Liquidtight flexible metallic conduit and fittings (LFMC)
- E. Rigid polyvinyl chloride conduit and fittings (PVC)
- F. Wall and ceiling outlet boxes
- G. Electrical connection
- H. Pull and junction boxes

1.02 RELATED WORK

A. Section 26 0553 - Electrical Identification: Refer to electrical identification for color and identification labeling requirements.

1.03 REFERENCES

- A. American National Standards Institute (ANSI):
 - 1. ANSI C80.1 Rigid Steel Conduit, Zinc-Coated
 - 2. ANSI C80.3 Electrical Metallic Tubing, Zinc-Coated and Fittings
 - 3. ANSI C80.4 Fittings for Rigid Metal Conduit and Electrical Metallic Tubing
 - 4. ANSI/NEMA OS 1 Sheet-Steel Outlet Boxes, Device Boxes, Covers and Box Supports
 - 5. ANSI/NEMA OS 2 Nonmetallic Outlet Boxes, Device Boxes, Covers and Box Supports
- B. Federal Specifications (FS):
 - 1. A-A-50553A Fittings for Conduit, Metal, Rigid, (Thick-Wall and Thin-Wall (EMT) Type
 - 2. A-A-55810 Specification for Flexible Metal Conduit
- C. NECA "Standards of Installation"
- D. National Electrical Manufacturers Association (NEMA):
 - 1. ANSI/NEMA FB 1 Fittings, Cast Metal Boxes, and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable
 - 2. TC 2 Electrical Polyvinyl Chloride (PVC) Conduit
 - 3. TC 9 Fittings for PVC Plastic Utilities Duct for Underground Installation
- E. NFPA 70 National Electrical Code (NEC)
- F. Underwriters Laboratories (UL): Applicable Listings
 - 1. UL 1 Flexible Metal Conduit
 - 2. UL 6 Rigid Metal Conduit
 - 3. UL 360 Liquid Tight Flexible Steel Conduit
 - 4. UL514-B Conduit Tubing and Cable Fittings
 - 5. UL651-A Type EB and a PVC Conduit and HDPE Conduit
 - 6. UL746A Standard for Polymeric Materials Short Term Property Evaluations
 - 7. UL797 Electrical Metal Tubing

G. Definitions:

- 1. Fittings: Conduit connection or coupling.
- 2. Body: Enlarged fittings with opening allowing access to the conductors for pulling purposes only.
- 3. Mechanical Spaces: Enclosed areas, usually kept separated from the general public, where the primary use is to house service equipment and to route services. These spaces generally have exposed structures, bare concrete and non-architecturally emphasized finishes.
- 4. Finished Spaces: Enclosed areas where the primary use is to house personnel and the general public. These spaces generally have architecturally emphasized finishes, ceilings and/or floors.
- 5. Concealed: Not visible by the general public. Often indicates a location either above the ceiling, in the walls, in or beneath the floor slab, in column coverings, or in the ceiling construction.
- 6. Above Grade: Not directly in contact with the earth. For example, an <u>interior</u> wall located at an elevation below the finished grade shall be considered above grade but a wall retaining earth shall be considered below grade.
- 7. Slab: Horizontal pour of concrete used for a floor or sub-floor.

PART 2 - PRODUCTS

2.01 RIGID METALLIC CONDUIT (RMC) AND FITTINGS

- A. Manufacturers:
 - 1. Atkore Allied Tube & Conduit
 - 2. Nucor
 - 3. Electroline
 - 4. Western Tube
 - 5. Wheatland Tube Co
 - 6. Engineer pre-approved equivalent
- B. Manufacturers of RMC Conduit Fittings:
 - 1. ABB/Thomas & Betts
 - 2. Eaton/Crouse-Hinds
 - 3. Electroline
 - 4. Emerson Appleton & OZ Gedney
 - 5. Hubbell Raco and Killark
 - 6. NSI Bridgeport
 - 7. Orbit Industries
 - 8. Wesco Regal
 - 9. Engineer pre-approved equivalent
- C. Minimum Size Galvanized Steel: 3/4 inch, unless otherwise noted.
- D. Fittings and Conduit Bodies:
 - 1. End Bell Fittings: Malleable iron, hot dip galvanized, threaded flare type with provisions for mounting to form.
 - 2. Expansion Joints: Malleable iron and hot dip galvanized providing a minimum of 4 inches of movement. Fitting shall be watertight with an insulating bushing and a bonding jumper.
 - 3. Expansion Joint for Concrete Encased Conduit: Neoprene sleeve with bronze end coupling, stainless steel bands and tinned copper braid bonding jumper. Fittings shall be watertight and concrete-tight.

- 4. Conduit End Bushings: Malleable iron type with molded-on high impact phenolic thermosetting insulation. Where required elsewhere in the contract documents, bushing shall be complete with ground conductor saddle and clamp. High impact phenolic threaded type bushings are not acceptable.
- 5. All other fittings and conduit bodies shall be of malleable iron construction and hot dip galvanized.

2.02 ELECTRICAL METALLIC TUBING (EMT) AND FITTINGS

- A. Minimum Size Electrical Metallic Tubing: 3/4 inch, unless otherwise noted.
 - B. Manufacturers of EMT Conduit:
 - 1. Allied Tube & Conduit
 - 2. Calbond Calpipe
 - 3. Nucor
 - 4. Electroline
 - 5. Western Tube
 - 6. Wheatland Tube Co
 - 7. Engineer pre-approved equivalent
 - C. Fittings and Conduit Bodies:
 - 1. 2" Diameter or Smaller: Compression or steel set screw type of steel designed for their specific application.
 - 2. 1/2" and 3/4" Conduit: Push-on connectors and couplers with locking ring and washer of zinc plated steel, listed for use in dry locations.
 - 3. Larger than 2": Compression or steel set screw type of steel designed for their specific application.
 - 4. Manufacturers of EMT Conduit Fittings:
 - a. ABB/Thomas & Betts
 - b. Eaton/Crouse-Hinds
 - c. Electroline
 - d. Emerson Appleton & OZ Gedney
 - e. Hubbell Raco and Killark
 - f. NSI Bridgeport
 - g. Orbit Industries
 - h. Wesco Regal
 - i. Engineer pre-approved equivalent

2.03 FLEXIBLE METALLIC CONDUIT (FMC) AND FITTINGS

- A. Minimum Size Galvanized Steel: 3/4 inch, unless otherwise noted. Lighting branch circuit wiring to an individual luminaire may be a manufactured, UL listed 3/8" flexible metal conduit and fittings with #14 AWG THHN conductors and an insulated ground wire. Maximum length of 3/8" FMC shall be six (6) feet.
- B. Manufacturers:
 - 1. ABB/Thomas & Betts
 - 2. Anamet Electrical
 - 3. Atkore American Flex AFC and Flexicon
 - 4. Electri-Flex Co
 - 5. Electroline
 - 6. Southwire Alflex
 - 7. Engineer pre-approved equivalent

DOC ASP LUA A/C REPLACEMENT Anamosa, IA

- C. Construction: Flexible steel, approved for conduit ground, zinc coated, threadless type formed from a continuous length of spirally wound, interlocked zinc coated strip steel. Provide a separate equipment grounding conductor when used for equipment where flexibility is required.
- D. Fittings and Conduit Bodies:
 - 1. Threadless hinged clamp type, galvanized zinc coated cadmium plated malleable cast iron.
 - 2. Fittings and conduit bodies shall include plastic or cast metal inserts supplied by the manufacturer to protect conductors from sharp edges.
 - 3. Manufacturers:
 - a. ABB/Thomas & Betts
 - b. Eaton/Crouse-Hinds
 - c. Electroline
 - d. Emerson Appleton & OZ Gedney
 - e. Hubbell Raco and Killark
 - f. NSI Bridgeport
 - g. Orbit Industries
 - h. Wesco Regal
 - i. Engineer pre-approved equivalent

2.04 LIQUIDTIGHT FLEXIBLE METALLIC CONDUIT (LFMC) AND FITTINGS

- A. Manufacturers:
 - 1. ABB/Thomas & Betts
 - 2. Anamet Electrical
 - 3. Atkore American Flex AFC and Flexicon
 - 4. Electri-Flex Co
 - 5. Electroline
 - 6. Southwire Alflex
 - 7. Engineer pre-approved equivalent
- B. Construction: Flexible steel, approved for conduit ground, zinc coated, threadless type formed from a continuous length of spirally wound, interlocked zinc coated strip steel and an extruded PVC cover.
- C. Fittings and Conduit Bodies:
 - 1. Watertight, compression type, galvanized zinc coated cadmium plated malleable cast iron, UL listed.
 - 2. Fittings and conduit bodies shall include plastic or cast metal inserts supplied by the manufacturer to protect conductors from sharp edges.
 - 3. Manufacturers:
 - a. ABB/Thomas & Betts
 - b. Eaton/Crouse-Hinds
 - c. Electroline
 - d. Emerson Appleton & OZ Gedney
 - e. Hubbell Raco and Killark
 - f. NSI Bridgeport
 - g. Orbit Industries

- h. Wesco Regal
- i. Engineer pre-approved equivalent

2.05 RIGID NON-METALLIC CONDUIT (PVC) AND FITTINGS

- A. Minimum Size Rigid Smooth-Wall Nonmetallic Conduit: 3/4 inch, unless otherwise noted.
- B. Acceptable Manufacturers:
 - 1. ABB/Carlon
 - 2. Chevron Phillips Chemical Company
 - 3. Cantex, J.M. Mfg.
 - 4. Atkore Heritage Plastics
 - 5. Engineer pre-approved equivalent
- C. Construction: Schedule 40 and Schedule 80 rigid polyvinyl chloride (PVC), UL labeled for 90°C.
- D. Fittings and Conduit Bodies: NEMA TC 3; sleeve type suitable for and manufactured especially for use with the conduit by the conduit manufacturer.
- E. Plastic cement for joining conduit and fittings shall be provided as recommended by the manufacturer.

2.06 OUTLET BOXES

- A. Sheet Metal Outlet Boxes: ANSI/NEMA OS 1; galvanized steel, 16 gauge (approximately 0.0625 inches), with 1/2-inch male fixture studs where required.
- B. Nonmetallic Outlet Boxes: ANSI/NEMA OS 2.
- C. Cast Boxes: NEMA FB1, Type FD, Aluminum, cast feralloy, or stainless steel deep type, gasketed cover, threaded hubs.
- D. Outlet boxes for luminaires to be not less than 1-1/2" deep, deeper if required by the number of wires or construction. The box shall be coordinated with surface luminaires to conceal the box from view or provide a finished trim plate.
- E. Wall or column receptacle outlet boxes shall be 4 inches square with raised cover to fit flush with finished wall line. Boxes in concrete block walls shall be installed the same as for switch boxes in block walls.

2.07 ECONN; ELECTRICAL CONNECTION

A. Electrical connection to equipment and motors, sized per Electrical Code. Coordinate requirements with contractor furnishing equipment or motor. Refer to specifications and general installation notes for terminations to motors.

2.08 JB; PULL AND JUNCTION BOXES

- A. Sheet Metal Boxes: ANSI/NEMA OS 1; galvanized steel.
- B. Sheet metal boxes larger than 12 inches in any dimension that contain terminations or components: Continuous hinged enclosure with 1/4 turn latch and white back panel for mounting terminal blocks and electrical components.
- C. Cast Metal Boxes for Outdoor and Wet Location Installations: NEMA 250; Type 4 and Type 6, flatflanged, surface-mounted junction box, UL listed as raintight. Galvanized cast iron box and cover with ground flange, neoprene gasket, and stainless steel cover screws.
- D. Cast Metal Boxes for Underground Installations: NEMA 250; Type 4, inside flanged, recessed cover box for flush mounting, UL listed as raintight. Galvanized cast iron box and plain cover with neoprene gasket and stainless steel cover screws.
- E. Flanged type boxes shall be used where installed flush in wall.

PART 3 - EXECUTION

3.01 CONDUIT INSTALLATION SCHEDULE AND SIZING

- A. In the event the location of conduit installation represents conflicting installation requirements as specified in the following schedule, a clarification shall be obtained from the Architect/Engineer. If this Contractor is unable to obtain a clarification as outlined above, concealed rigid galvanized steel conduit installed per these specifications and the Electrical Code shall be required.
- B. Installation Schedule: Refer to drawings.
- C. Size conduit as shown on the drawings and specifications. Where not indicated in the contract documents, conduit size shall be according to the Electrical Code. Conduit and conductor sizing shall be coordinated to limit conductor fill to less than 40%, maintain conductor ampere capacity as required by the Electrical Code (to include enlarged conductors due to temperature and quantity derating values) and to prevent excessive voltage drop and pulling tension due to long conduit/conductor lengths.
- D. Minimum Conduit Size (Unless Noted Otherwise):
 - 1. Above Grade: 3/4 inch. (The use of 1/2 inch would be allowed for installation conduit to individual light switches, individual receptacles and individual fixture whips from junction box.)
 - 2. Below Grade 5' or less from Building Foundation: 3/4 inch.
 - 3. Below Grade More than 5' from Building Foundation: 1 inch.
 - 4. Telecommunication Conduit: 1 inch.
 - 5. Controls Conduit: 1/2 inch.
- E. Conduit sizes shall change only at the entrance or exit to a junction box, unless specifically noted on the drawings.

3.02 CONDUIT ARRANGEMENT

- A. In general, conduit shall be installed concealed in walls, in finished spaces and where possible or practical, or as noted otherwise. Conduit shall be installed parallel or perpendicular to walls, ceilings, and exposed structural members. In unfinished spaces, mechanical and utility areas, conduit may run either concealed or exposed as conditions dictate and as practical unless noted otherwise on drawings. Installation shall maintain headroom in exposed vicinities of pedestrian or vehicular traffic.
- B. Exposed conduit on exterior walls or above roof will not be allowed without prior written approval of Architect/Engineer. A drawing of the proposed routing and a photo of the location shall be submitted 14 days prior to start of conduit rough-in. Routing shall be shown on coordination drawings.
- C. Conduit arrangement in elevated slabs (restricted to applications specifically noted or shown on drawings):
 - 1. Conduit size shall not exceed one-third of the structural slab thickness. Place conduit between the top and bottom reinforcing with a minimum of 3" concrete cover.
 - Parallel conduits shall be spaced at least 8 inches apart. Exception: Within 18 inches of commonly served floor boxes, junction boxes, or similar floor devices. Arrange conduits parallel or perpendicular to building lines and walls.
- D. Conduit shall not share the same cell as structural reinforcement in masonry walls.
- E. Conduit runs shall be routed as shown on large scale drawings. Conduit routing on drawings scaled 1/4"=1'-0" or less shall be considered diagrammatic, unless noted otherwise. The correct routing, when shown diagrammatically shall be chosen by the Contractor based on information in the contract documents, in accordance with manufacturer's written instructions, applicable codes, the NECA's "Standard of Installation", in accordance with recognized industry standards, and coordinated with other contractors.
- F. Contractor shall adapt Contractor's work to the job conditions and make such changes as required and permitted by the Architect/Engineer, such as moving to clear beams and joists, adjusting at columns, avoiding interference with windows, etc., to permit the proper installation of other mechanical and/or electrical equipment.

G. Contractor shall cooperate with all contractors on the project. Contractor shall obtain details of other contractor's work to ensure fit and avoid conflict. Any expense due to the failure of This Contractor to do so shall be paid for in full by Contractor. The other trades involved as directed by the Architect/Engineer shall perform the repair of work damaged as a result of neglect or error by This Contractor. The resultant costs shall be borne by This Contractor.

3.03 CONDUIT SUPPORT

- A. Conduit runs installed above a suspended ceiling shall be properly supported. In no case shall conduit rest on the suspended ceiling construction, nor utilize ceiling support system for conduit support.
 - 1. Support wire used to independently support raceway and wiring systems above suspending ceilings shall be supported on both ends, minimum 12 gauge suspended ceiling support wire, and distinguishable from ceiling support systems by color (field paint), tagging, or equivalent means.
- B. Conduit shall <u>not</u> be supported from ductwork, water, sprinkler piping, or other non-structural members, unless approved by the Architect/Engineer. All supports shall be from structural slabs, walls, structural members, and bar joists, and coordinated with all other applicable contractors, unless noted otherwise.
- C. Conduit shall be held in place by the correct size of galvanized one-hole conduit clamps, two-hole conduit straps, patented support devices, clamp back conduit hangers, or by other means if called for on the drawings.
- D. Support individual horizontal raceways with separate, malleable-iron pipe hangers or clamps.
- E. Spring-steel conduit clips specifically designed for supporting single conduits or tubing may be used in lieu of malleable-iron hangers for 1-1/2" and smaller raceways serving lighting and receptacle branch circuits above accessible ceilings and for securing raceways to slotted channel and angle supports.
- F. Group conduits in parallel runs where practical and use conduit racks or trapeze hangers constructed of steel channel, suspended with threaded solid rods or wall mounted from metal channels with conduit straps or clamps. Provide space in each rack or trapeze for 25% additional conduits.
- G. Do not exceed 25 lbs. per hanger and a minimum spacing of 2'-0" on center when attaching to metal roof decking (excludes concrete on metal deck). This 25 lbs. load and 2'-0" spacing include adjacent electrical and mechanical items hanging from deck. If the hanger restrictions cannot be achieved, supplemental framing off steel framing will need to be added.
- H. Arrange supports in vertical runs so the weight of raceways and enclosed conductors is carried entirely by raceway supports, with no weight load on raceway terminals.
- I. Supports for metallic conduit shall be no greater than 10 feet. A smaller interval may be used if necessitated by building construction, but in no event shall support spans exceed the Electrical Code requirements. Conduit shall be securely fastened within 3 feet of each outlet box, junction box, device box, cabinet, or fitting.
- J. Supports of flexible conduit shall be within 12 inches of each outlet box, junction box, device box, cabinet, or fitting and at intervals not to exceed 4.5 feet.
- K. Supports for non-metallic conduit shall be at sufficiently close intervals to eliminate any sag in the conduit. The manufacturer's recommendations shall be followed, but in no event shall support spans exceed the Electrical Code requirements.
- L. Where conduit is to be installed in poured concrete floors or walls, provide concrete-tight conduit inserts securely fastened to forms to prevent conduit misplacement.
- M. Finish:
 - 1. Prime coat exposed steel hangers and supports. Hangers and supports in crawl spaces, pipe shafts, and above suspended ceiling spaces are not considered exposed.
 - 2. Trim all ends of exposed field fabricated steel hangers, slotted channel and threaded rod to within 1" of support or fastener to eliminate potential injury to personnel unless shown otherwise on the drawings. Smooth ends and install elastomeric insulation with two coats of latex paint if exposed steel is within 6'-6" of finish floor and presents potential injury to personnel.

3.04 CONDUIT INSTALLATION

- A. Conduit Connections:
 - 1. Shorter than standard conduit lengths shall be cut square using industry standards. The ends of all conduits cut shall be reamed or otherwise finished to remove all rough edges.
 - 2. Metallic conduit connections in slab on grade installation shall be sealed and one coat of rust inhibitor primer applied after the connection is made.
 - 3. Where conduits with tapered threads cannot be coupled with standard couplings, then approved split or Erickson couplings shall be used. Running threads will <u>not</u> be permitted.
 - 4. Install expansion/deflection joints where conduit crosses structure expansion/seismic joints.
- B. Conduit terminations for all low voltage wiring shall have nylon bushings installed on each end of every conduit run.
- C. Conduit Bends:
 - 1. Use a hydraulic one-shot conduit bender or factory elbows for bends in conduit 2" in size or larger. All steel conduit bending shall be done cold; no heating of steel conduit shall be permitted.
 - 2. All bends of rigid polyvinyl chloride conduit (PVC) shall be made with the manufacturer's approved bending equipment. The use of spot heating devices will not be permitted (i.e. blow torches).
 - 3. A run of conduit shall not contain more than the equivalent of four (4) quarter bends (360°), including those bends located immediately at the outlet or body.
 - 4. Rigid polyvinyl chloride conduit (PVC) runs longer than 100 feet or runs which have more than two 90° equivalent bends (regardless of length) shall use rigid metal or RTRC factory elbows for bends.
 - 5. Use conduit bodies to make sharp changes in direction (i.e. around beams).
- D. Conduit Placement:
 - Conduit shall be mechanically continuous from source of current to all outlets. Conduit shall be electrically continuous from source of current to all outlets, unless a properly sized grounding conductor is routed within the conduit. All metallic conduits shall be bonded per the Electrical Code.
 - 2. Route exposed conduit and conduit above suspended ceilings (accessible or not) parallel/perpendicular to the building structural lines, and as close to building structure as possible. Wherever possible, route horizontal conduit runs above water and steam piping.
 - 3. Route conduit through roof openings provided for piping and ductwork where possible. If not provided or routing through provided openings is not possible, route through roof jack with pitch pocket. Coordinate roof penetrations with other trades.
 - 4. Conduits, raceway, and boxes shall not be installed in concealed locations in metal deck roofing or less than 1.5" below bottom of roof decking.
 - 5. Avoid moisture traps where possible. Where unavoidable, provide a junction box with drain fitting at conduit low point.
 - 6. All conduits through walls shall be grouted or sealed into openings. Where conduit penetrates firewalls and floors, seal with a UL listed sealant. ; refer to Section 26 0503 for through penetration firestopping requirements.
 - 7. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL OPENINGS REQUIRED IN MASONRY OR EXTERIOR WALLS UNDER THIS DIVISION. A QUALIFIED MASON AT THE EXPENSE OF THIS CONTRACTOR SHALL REPAIR ALL OPENINGS TO MATCH EXISTING CONDITIONS.
 - 8. Seal interior of conduit at exterior entries, air handling units, coolers/freezers, etc., and where the temperature differential can potentially be greater than 20°F, to prevent moisture penetration. Seal shall be placed where conduit enters warm space. Conduit seal fitting shall be a drain/seal, with sealing compound, identified for use with cable and raceway system.
 - 9. Do not route conduits across each other in slabs on grade.

- 10. Rigid polyvinyl chloride conduit (PVC) shall be installed when material surface temperatures and ambient temperature are greater than 40°F.
- 11. Where rigid polyvinyl chloride conduit (PVC) is used below grade, in a slab, below a slab, etc., a transition to rigid galvanized steel or reinforced thermosetting resin conduit RTRC conduit shall be installed before conduit exits earth. The conduit shall extend a minimum of 6" into the surface concealing the non-metallic conduit.
- 12. Contractor shall provide suitable mechanical protection around all conduits stubbed out from floors, walls or ceilings during construction to prevent bending or damaging of stubs due to carelessness with construction equipment.
- 13. Contractor shall provide a polypropylene pull cord with 2000 lbs. tensile strength in each empty conduit (indoor and outdoor), except in sleeves and nipples.

3.05 CONDUIT TERMINATIONS

- A. Where conduit bonding is indicated or required in the contract documents, the bushings shall be a grounding type sized for the conduit and ground bonding conductor as manufactured by O-Z/Gedney, Appleton, Thomas & Betts, Burndy, Regal, Orbit Industries or approved equal.
- B. Conduits with termination fittings shall be threaded for one (1) lock nut on the outside and one (1) lock nut and bushing on the inside of each box.
- C. Where conduits terminate in boxes with knockouts, they shall be secured to the boxes with lock nuts and provided with approved screw type tinned iron bushings or fittings with plastic inserts.
- D. Where conduits terminate in boxes, fittings, or bodies with threaded openings, they shall be tightly screwed against the shoulder portion of the threaded openings.
- E. Conduit terminations to all motors shall be made with flexible metallic conduit (FMC), unless noted otherwise. Final connections to roof exhaust fans, or other exterior motors and motors in damp or wet locations shall be made with liquidtight flexible metallic conduit (LFMC). Motors in hazardous areas, as defined in the Electrical Code, shall be connected using flexible conduit rated for the environment. Flexible conduit shall not exceed 6' in length. Route equipment ground conductors from circuit ground to motor ground terminal through flexible conduit.
- F. Rigid polyvinyl chloride conduit (PVC) shall be terminated using fittings and bodies produced by the manufacturer of the conduit, unless noted otherwise. Prepare conduit as per manufacturer's recommendations before joining. All joints shall be solvent welded by applying full even coat of plastic cement to the entire areas that will be joined. Turn the conduit at least a quarter to one half turn in the fitting and let the joint cure for 1-hour minimum or as per the manufacturer's recommendations.
- G. All conduit ends shall be sealed with plastic immediately after installation to prevent the entrance of any foreign matter during construction. The seals shall be removed and the conduits blown clear of all foreign matter prior to any wires or pull cords being installed.

3.06 UNDERGROUND CONDUIT INSTALLATION

- A. Conduit Connections:
 - 1. Conduit joints in a multiple conduit run shall be staggered at least one foot apart.
- B. Conduit Bends (Lateral):
 - 1. Conduits shall have long sweep radius elbows instead of standard elbows wherever special bends are indicated and noted on the drawings, or as required by the manufacturer of the equipment or system being served.
- C. Conduit Elbows (vertical):
 - 1. Minimum metal or RTRC elbow radiuses shall be 30 inches for primary conduits (greater than 600V) and 18 inches for secondary conduits (less than 600V). Increase radius, as required, based on pulling tension calculation requirements.

- D. Expansion Fittings at Finished Grade: Provide underground raceways with an expansion fitting after emerging from finished grade and exterior equipment pads. Field locate the expansion fitting above and within 24 inches of finished grade. Raceways extending less than 12 inches above finished grade, transitioning to LFMC within 12 inches of finished grade, and interior concrete building slabs do not require an expansion fitting unless required by code.
- E. Conduit Placement:
 - 1. Conduit runs shall be pitched a minimum of 4" per 100 feet to drain toward the terminations. Duct runs shall be installed deeper than the minimum wherever required to avoid any conflicts with existing or new piping, tunnels, etc.
 - 2. For parallel runs, use suitable separators and chairs installed not greater than 4' on centers. Band conduit together with suitable banding devices. Securely anchor conduit to prevent movement during concrete placement or backfilling.
 - Where concrete is required, the materials for concreting shall be thoroughly mixed to a minimum f'c = 2500 and immediately placed in the trench around the conduits. No concrete that has been allowed to partially set shall be used.
 - 4. Before the Contractor pulls any cables into the conduit, Contractor shall have a mandrel 1/4" smaller than the conduit inside diameter pulled through each conduit and if any concrete or obstructions are found, the Contractor shall remove them and clear the conduit. Spare conduit shall also be cleared of all obstructions.
 - 5. Conduit terminations in manholes, masonry pull boxes, or masonry walls shall be with malleable iron end bell fittings.
 - 6. All spare conduits not terminated in a covered enclosure shall have its terminations plugged as described above.
 - 7. Conduit shall be installed a minimum of 24" below finished grade, unless otherwise noted on the drawings or elsewhere in these specifications.
 - 8. All non-metallic conduit installed underground outside of a slab shall be rigid.
- F. Raceway Seal (Exterior to Raceway):
 - 1. All power, telecommunication, electrical conduits and innerducts shall be sealed between the raceway and the building foundation. The raceway penetration shall be sealed liquid-tight, water-tight, non-corrosive.
 - 2. Below Grade Installation Options:
 - a. Cast-in-place concrete installation.
 - b. Hydraulic cement, hydraulic group, hydraulic epoxy.
 - c. Foundation Underground Sleeves and Seals; refer to Part 2-Products for product information.
 - 3. Above Grade Installation Options:
 - a. Masonry grout for masonry applications.
 - b. Caulk Sealant, interior/exterior rated, color per architect. Approved Manufacturers include Sachco, Tremco Vulkem, Sika or Engineer pre-approved equivalent when not specified by architectural scope.
- G. Raceway Seal (Interior to Raceway, with Cables or Empty):
 - 1. All power, telecommunication, electrical conduits and innerducts, including those with cables, shall be sealed at the building and vault entry. The seal shall prevent the entry of liquids or gases. Seal must be compatible with conductors and raceway system. Spare or unused raceways shall also be sealed.

- 2. Installation Schedule, nominal size:
 - a. 2" or less: Duct Seal Bushing or Duct Sealnt
 - b. 2-1/2" through 4": Duct Seal Bushing
 - c. 5" and 6": Wall Sleeve Duct Seal System

3.07 BOX INSTALLATION SCHEDULE

- A. Galvanized steel boxes may be used in:
 - 1. Concealed interior locations above ceilings and in hollow studded partitions.
 - 2. Exposed interior locations in mechanical rooms and in rooms without ceilings; higher than 8' above the highest platform level.
 - 3. Direct contact with concrete except slab on grade.
 - B. Cast boxes shall be used in:
 - 1. Exterior locations.
 - 2. Exposed interior locations within 8' of the highest platform level.
 - 3. Direct contact with earth.
 - 4. Direct contact with concrete in slab on grade.
 - 5. Wet locations.

3.08 COORDINATION OF BOX LOCATIONS

- A. Provide electrical boxes as shown on the drawings, and as required for splices, taps, wire pulling, equipment connections, and code compliance.
- B. Electrical box locations shown on the Contract Drawings are approximate, unless dimensioned. Verify location of floor boxes and outlets in offices and work areas prior to rough-in.
- C. Locate and install boxes to allow access. Avoid interferences with ductwork, piping, structure, equipment, etc. Recessed luminaires shall not be used as access to outlet, pull, and junction boxes. Where installation is inaccessible, provide access doors. Coordinate locations and sizes of required access doors with the Architect/Engineer and General Contractor.
- D. Locate and install to maintain headroom and to present a neat appearance.
- E. Coordinate locations with Heating Contractor to avoid baseboard radiation cabinets.

3.09 OUTLET BOX INSTALLATION

- A. Mount at heights shown or noted on the drawings or as generally accepted if not specifically noted.
- B. Provide knockout closures for unused openings.
- C. Support boxes independently of conduit.
- D. Use multiple-gang boxes where more than one device is mounted together; do not use sectional boxes. Provide barriers to separate wiring of different voltage systems.
- E. Coordinate mounting heights and locations of outlets mounted above counters, benches, backsplashes, and below baseboard radiation.
- F. Align wall-mounted outlet boxes for switches, thermostats, and similar devices.
- G. Provide cast outlet boxes in exterior locations and wet locations, and where exposed rigid conduit is used.

3.10 PULL AND JUNCTION BOX INSTALLATION

- A. Locate pull boxes and junction boxes above accessible ceilings or in unfinished areas.
- B. Support pull and junction boxes independent of conduit.

3.11 EXPOSED BOX INSTALLATION

- A. Boxes shall be secured to the building structure with proper size screws, bolts, hanger rods, or structural steel elements.
- B. On brick, block and concrete walls or ceilings, exposed boxes shall be supported with no less than two
 (2) Ackerman-Johnson, Paine, Phillips, or approved equal screw anchors or expansion shields and round head machine screws. Cast boxes shall not be drilled.
- C. On steel structures, exposed boxes shall be supported to the steel member by drilling and tapping the member and fastening the boxes by means of round head machine screws.
- D. Boxes may be supported on steel members by APPROVED beam clamps if conduit is supported by beam clamps.
- E. Boxes shall be fastened to wood structures by means of a minimum of two (2) wood screws adequately large and long to properly support. (Quantity depends on size of box.)
- F. Wood, plastic, or fiber plugs shall not be used for fastenings.
- G. Explosive devices shall not be used unless specifically allowed.

SECTION 26 0553 ELECTRICAL IDENTIFICATION

PART 1 - GENERAL

1.01 SECTION INCLUDES

- A. Adhesive Markings and Field Labels
- B. Nameplates and Signs
- C. Product Colors

1.02 REFERENCES

- A. NFPA 70E National Electrical Safety Code
- B. NFPA 70 National Electrical Code (NEC)
- C. ANSI A13.1 Standard for Pipe Identification
- D. ANSI Z535.4 Standard for Product Safety Signs and Labels

1.03 QUALITY ASSURANCE

A. Electrical identification products shall be suitable for the environment installed. Identification labels damaged by the environment due to ultraviolet light fading, damp or wet conditions, physical damage, corrosion, or other conditions shall be replaced with labels suitable for the environment.

PART 2 - PRODUCTS

2.01 ADHESIVE MARKINGS AND FIELD LABELS

- A. Pretensioned Flexible Wraparound Colored Plastic Sleeves for Cable Identification: flexible acrylic bands sized to suit the cable diameter and arranged to stay in place by pre-tensioned gripping action when coiled around the cable.
- B. Wire/Cable Designation Tape Markers: Vinyl or vinyl-cloth, self-adhesive, wraparound, cable/conductor markers with preprinted numbers and letter.
- C. Underground Plastic Markers: Bright colored continuously printed plastic ribbon tape of not less than 6 inches wide by 4 mil thick, printed legend indicating type of underground line, manufactured for direct burial service. Tape shall contain a continuous metallic wire to allow location with a metal detector.
- D. Indoor/Outdoor Number and Letters: Outdoor grade vinyl label with acrylic adhesive designed for permanent application in severe indoor and outdoor environments.
- E. Text Sizes:
 - 1. The following information shall be used for text heights, fonts, and size, unless otherwise noted.
 - a. Font: Normal 721 Swiss Bold
 - b. Adhesive Labels: 3/16 inch minimum text height
 - c. Vinyl / Plastic Laminate Labels: 3/4" inch minimum text height

2.02 NAMEPLATES AND SIGNS

- A. Engraved, Plastic-Laminated Labels, Signs and Instruction Plates: Engraving stock melamine plastic laminate, 1/16-inch minimum thick for signs up to 20 square inches, or 8 inches in length; 1/8 inch thick for larger sizes. Labels shall be punched for mechanical fasteners.
- B. Text Sizes:
 - 1. The following information shall be used for text heights, fonts, and size, unless otherwise noted.
 - a. Text Height: 3/8 inch minimum
- C. Baked-Enamel Signs for interior Use: Preprinted aluminum signs, punched, or drilled for fasteners, with colors, legend, and size required for application. Mounting ¼" grommets in corners.

DOC ASP LUA A/C REPLACEMENT Anamosa, IA

- D. Exterior, Metal-Backed, Butyrate Signs: Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396 inch galvanized-steel backing: and with colors, legend, and size required for application. Mounting 1/4" grommets in corners.
- E. Safety Signs: Comply with 29 CFR, Chapter XVII, Part 1910.145.
- F. Fasteners for Plastic-Laminated Signs; Self-tapping stainless steel screws or number 10/32 stainless steel machine screws with nuts and flat and lock washers.

2.03 PRODUCT COLORS

- A. Adhesive Markings and Field Labels:
 - 1. All Labels: Black letters on white face
- B. Nameplates and Signs:
 - 1. NORMAL POWER: Black letters on white face
- C. Raceways and Conduit:
 - 1. Provide color coded conduit as indicated below. Conduit shall be colored by the manufacturer:
 - a. Normal Power and General Distribution: Silver
 - b. Fire Alarm System: Red
 - c. Temperature Controls: Refer to mechanical cover sheet for color
- D. Box Covers:
 - 1. Box cover colors shall match conduit colors listed above.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Lettering and Graphics: Coordinate names, abbreviations, colors, and other designations used in electrical identification work with corresponding designations specified or indicated. Install numbers, lettering, and colors as required by code.
- B. Install identification devices in accordance with manufacturer's written instruction and requirements of Electrical Code.
- C. Sequence of Work: Where identification is to be applied to surfaces that require finish, install identification after completion of finish work. All mounting surfaces shall be cleaned and degreased prior to identification installation.
- D. Circuit Identification: Tag or label conductors as follows:
 - 1. Multiple Power or Lighting Circuits in Same Enclosure: Where multiple branch circuits are terminated or spliced in a box or enclosure, label each conductor with source and circuit number.
 - 2. Multiple Control Wiring and Communication/Signal Circuits in Same Enclosure: For control and communications/signal wiring, use wire/cable marking tape at terminations in wiring boxes, troughs, and control cabinets. Use consistent letter/number conductor designations throughout on wire/cable marking tape.
 - 3. Match identification markings with designations used in panelboards shop drawings, Contract Documents, and similar previously established identification schemes for the facility's electrical installations.
- E. Apply Danger, Warning, Caution and instruction signs as follows:
 - Install Danger, Warning, Caution or instruction signs where required by Electrical Code, where indicated, or where reasonably required to assure safe operation and maintenance of electrical systems and of the items to which they connect. Install engraved plastic-laminated instruction signs with approved legend where instructions or explanations are needed for system or equipment operation. Install metal-backed butyrate signs for outdoor items.
 - 2. 'Danger' indicates a hazardous situation which, if not avoided, will result in death or serious injury. ANSI standard red background, white letters.

- 3. 'Warning' indicates a hazardous situation which, if not avoided, could result in death or serious injury. ANSI standard orange background, black letters.
- 4. 'Caution' indicates a hazardous situation which, if not avoided, may result in minor or moderate injury. ANSI standard yellow background, black letters.
- 5. Emergency Operating Signs: Install, where required by Electrical Code, where indicated, or where reasonably required to assure safe operation and maintenance of electrical systems and of the items to which they connect, engraved laminate signs with white legend on red background with minimum 3/8-inch high lettering for emergency instructions on power transfer, load shedding, or other emergency operations.
- F. Apply circuit/control/item designation labels of engraved plastic laminate for pushbuttons, pilot lights, alarm/signal components, and similar items, except where labeling is specified elsewhere.
- G. Install labels parallel to equipment lines at locations as required and at locations for best convenience of viewing without interference with operation and maintenance of equipment.
- H. Install ARC FLASH WARNING signs on all switchboards, switchgear, distribution panels, branch panelboards, industrial control panels, and motor control centers.
 - 1. Sample Label:

! WARNING

ARC FLASH AND SHOCK HAZARD APPROPRIATE PPE REQUIRED FAILURE TO COMPLY CAN RESULT IN DEATH OR INJURY REFER TO NFPA 70E

I. Underground Electrical Lines: For exterior underground power, control, signal, and communication lines, install continuous underground plastic line marker located directly above line at 6 (150mm) to 8 (205mm) inches below grade. A single plastic line marker is permitted when the width of the common trench does not exceed 16 inches; provide a second plastic line marker to mark each edge of the trench when 16 inches of width is exceeded. Install line marker for underground wiring, both direct-buried cables and cables in raceway.

3.02 FEEDER AND BRANCH CIRCUIT DIRECTORIES

- A. Product:
 - 1. Adhesive labels and field markings
 - 2. Nameplates and signs
- B. Feeder Directories Branch: Provide each feeder, branch circuit, feeder modification, and branch circuit modification with a typed circuit directory label. Refer to technical equipment specification sections for additional requirements. Include the following with each label:
 - 1. Load Description: Lighting, receptacles, specific equipment, spare, space, or similar description.
 - 2. Location: Room name, number, location.
- C. Provide a factory or custom clear plastic sleeve for each branch panel directory and secure to inside panel cover.

3.03 LIGHTING CONTROL AND RECEPTACLE COVER PLATES

- A. Product:
 - 1. Adhesive labels and field markings
 - 2. Nameplates and signs
- B. Identification material to be a clear, 3/8-inch Kroy tape or Brother self-laminating vinyl label with black letters. Embossed Dymo-Tape labels are not acceptable. Permanently affix identification label to cover plates, centered above the receptacle openings.

C. Provide identification on all switch and receptacle cover plates. Identification shall indicate source and circuit number serving the device (e.g. "C1A #24").

3.04 BOX LABELING

- A. Products:
 - 1. Adhesive labels and field markings
- B. Identify Junction, Pull and Connection Boxes: Labeling shall be 3/8-inch Kroy tape OR Brother selflaminating vinyl label, letters/numbers color coded same as conduits.
- C. All junction, pull, and connection boxes shall be identified as follows:
 - 1. For power and lighting circuits, indicate system voltage and identity of contained circuits ("120V, 1LA1-3,5,7").
 - 2. For other wiring, indicate system type and description of wiring ("FIRE ALARM NAC #1").

3.05 CONDUCTOR COLOR CODING

- A. Products:
 - 1. All wire and cables shall be color coded by the manufacturer.
- B. Color coding shall be applied at all panels, switches, junction boxes, pull boxes, vaults, manholes etc., where the wires and cables are visible and terminations are made. The same color coding shall be used throughout the entire electrical system, therefore maintaining proper phasing throughout the entire project.
- C. Colored cable ties shall be applied in groups of three ties of specified color to each conductor at each terminal or splice point starting 3 inches from the termination and spaced at 3- inches centers. Tighten to a snug fit, and cut off excess length.
- D. Where more than one nominal voltage system exists in a building or facility, each ungrounded conductor of a multi-wire branch circuit, where accessible, shall be identified by phase and system.
- E. Conductors shall be color coded as follows:
 - 1. 208Y/120 Volt, 4-Wire:
 - a. A-Phase Black
 - b. B-Phase Red
 - c. C-Phase Blue
 - d. Neutral White
 - e. Ground Bond Green
 - 2. Grounding Conductors:
 - a. Equipment grounding conductors, main/system/supply-side bonding jumpers: Green.
 - 3. Cabling for Remote Control, Signal, and Power Limited Circuits:
 - a. Fire Alarm: Refer to Fire Alarm and Automatic Detection Section 28 3100 for cable color requirements.
 - b. Low Voltage Switching: Per manufacturer recommendations and code requirements.
 - c. Building Automation Systems and Control: Refer to the Temperature Control Contactor notes located on the mechanical cover sheet.

3.06 CONTROL EQUIPMENT IDENTIFICATION

- A. Products:
 - 1. Nameplates and signs
- B. Provide identification on the front of all control equipment such as combination starters, starters, VFDs, contactors, motor control centers, etc.

- C. Identification shall be provided for all connections to equipment furnished by this Contractor, other contractors, or the Owner.
- D. Labeling shall include:
 - 1. Equipment type and contract documents designation of equipment being served.
 - 2. Location of equipment being served if it is not located within sight.
 - 3. Voltage and phase of circuit(s).
 - 4. Panel and circuit number(s) serving the equipment.
 - 5. Available fault current.
 - 6. Date of fault current study.
 - 7. Sample Label:

EXHAUST FAN EF-1 ("LOCATED ON ROOF") 480V, 3-PHASE FED FROM "1HA1-1" AUTO CONTROL BY FMCS 22,000 AMPS AVAILABLE FAULT CURRENT DATE OF STUDY: 1 JAN 2017

3.07 EQUIPMENT CONNECTION IDENTIFICATION

- A. Products:
 - 1. Nameplates and signs
- B. Provide identification for hard wired electrical connections to equipment such as disconnects switches, starters, etc. Plug and cord type connections do not require this specific label.
- C. Identification shall be provided for all connections to equipment furnished by this Contractor, other contractors, or the Owner.
- D. Labeling shall include:
 - 1. Equipment type and contract documents designation of equipment being served
 - 2. Location of equipment being served if it is not located within sight.
 - 3. Voltage and rating of the equipment.
 - 4. Panel and circuit numbers(s) serving the equipment
 - 5. Available fault current.
 - 6. Date of fault current study.
 - 7. Sample Label:

UNIT HEATER UH-1 ("LOCATED IN STORAGE ROOM 200") 480V: 3-PHASE FED FROM "1HA1-1" 22,000 AMPS AVAILABLE FAULT CURRENT DATE OF STUDY: 1 JAN 2017

SECTION 26 2419 MOTOR CONTROL

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. Manual motor starters and switches

1.02 RELATED SECTIONS AND WORK

A. Refer to the Disconnect and Starter Schedule.

1.03 REFERENCES

- A. ANSI/UL Standard 508. Standard for Industrial Control Equipment
- B. FCC Rules and Regulations, Part 15, Subpart J- Radio Frequency Interference
- C. FS W-S-865 Switch, Box, (Enclosed), Surface-Mounted
- D. NEMA ICS 2 Industrial Control Devices, Controllers, and Assemblies
- E. NEMA ICS 6 Enclosures for Industrial Controls and Systems
- F. NEMA KS 1 Enclosed Switches

1.04 SUBMITTALS

- A. Submit shop drawings and product data under provisions of Section 26 0500.
- B. Indicate on shop drawings, front and side views of motor control center enclosures with overall dimensions. Include conduit entrance locations and requirements; wiring diagrams that differentiate between manufacturer-installed and field-installed wiring; nameplate legends; size and number of bus bars per phase, neutral, and ground; electrical characteristics including voltage, frame size and trip ratings, withstand ratings, and time-current curves of all equipment and components.
- C. Provide product data on motor starters and combination motor starters, relays, pilot devices, and switching and over-current protective devices.
- D. Submit manufacturer's instructions under provisions of Section 26 0500.

1.05 DELIVERY, STORAGE, AND HANDLING

- A. Deliver products to site under provisions of Section 26 0500.
- B. Deliver in 60-inch maximum width shipping splits, individually wrapped for protection, and mounted on shipping skids.
- C. Store and protect products under provisions of Section 26 0500.
- D. Store in a clean, dry space. Maintain factory wrapping or provide an additional heavy canvas or heavy plastic cover to protect units from fumes, dirt, water, construction debris, traffic, and physical damage.
- E. Handle in accordance with manufacturer's written instructions. Lift only with lugs provided for the purpose. Handle carefully to avoid damage to motor control center components, enclosure, and finish.

1.06 OPERATION AND MAINTENANCE DATA

- A. Submit operation and maintenance data under provisions of Section 26 0500.
- B. Include spare parts data listing; source and current prices of replacement parts and supplies; and recommended maintenance procedures and intervals.

PART 2 - PRODUCTS

2.01 MANUAL MOTOR SWITCHES MX-#

- A. Acceptable Manufacturers:
 - 1. Square D 2500 Series
 - 2. Eaton MS Series

- 3. ABB
- 4. Siemens SMF / MMS Series
- B. Motor Starting Switch: NEMA ICS 2; AC general-purpose Class A manually operated, full-voltage controller for fractional horsepower induction motors, without thermal overload unit, and toggle operator.
- C. Enclosure: NEMA ICS 6; Type 1.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Install motor control equipment in accordance with manufacturer's instructions.
- B. Motor Data: Provide neatly typed label inside each motor starter enclosure door identifying motor served, nameplate horsepower, full load amperes, code letter, service factor, and voltage/phase rating.

SECTION 26 2923 VARIABLE FREQUENCY DRIVES

PART 1 - GENERAL

1.01 SECTION INCLUDES

A. Variable frequency drives (VFD-#)

1.02 RELATED SECTIONS AND WORK

- A. Refer to the Variable Frequency Drive Schedule for rating and configuration.
- B. Division(s) 21, 22, 23 Fire Protection, Plumbing, and Mechanical when referenced.

1.03 REFERENCES

- A. ANSI/UL Standard 508
- B. ANSI/NEMA ICS 6 Enclosures for Industrial Controls and Systems
- C. Standard for Harmonic Control in Electrical Power Systems IEEE 519-2022 Guide for Harmonic Control and Reactive Compensation of Static Power Converters
- D. FCC Rules and Regulations, Part 15, Subpart J Radio Frequency Interference

1.04 SUBMITTALS

- A. Submit shop drawings and product data under provisions of Section 26 0500.
- B. Shop Drawings: Include front and side views of enclosures with overall dimensions and weights shown; conduit entrance locations and requirements; and nameplate legends.
- C. Product Data: Provide catalog sheets showing PWM configuration (6, 12, 18 pulse, Active Front End AFE), voltage, controller size, ratings and size of switching and overcurrent protective devices, short circuit ratings, dimensions, and enclosure details.
- D. Product Data for Accessories and Options: Provide catalog sheets showing voltage, dimensions, ratings, for accessories and options. Include information for passive harmonic filters, active harmonic filters, line reactors, shielded VFD cabling, output filters, etc. as an inclusive submittal package provided by the VFD supplier. The VFD supplier shall act as a single contact of responsibility.
- E. Manufacturer's Installation Instructions: Indicate application conditions and limitations of use stipulated by Product testing agency specified under Regulatory Requirements. Include instructions for storage, handling, protection, examination, preparation, installation, and starting of Product.
- F. Contractor's Letter of Acknowledgement: The contractor shall include a letter acknowledging the following with date and signature. The letter shall include a location for the installing contractor to sign the document:
 - 1. The manufacturer/vendor received a complete copy of the design document specifications, plans, and schedules as related to the variable frequency drive requirements for the project.
 - 2. The contractor and manufacturer have reviewed the distance relationship between the VFD location and the motor(s) served in conjunction with the installing contractors cable routing plan. The submittal includes compliance with the minimum requirements for each specific application including the addition of harmonic filters and shielded VFD cabling. The contractor is responsible for compiling and documenting information including cable lengths for mutual review with the manufacturer.
 - 3. Leading Power Factor Management: The manufacturer has reviewed the design and identified VFD applications scheduled to operate on a generator power source.

1.05 DELIVERY, STORAGE, AND HANDLING

- A. Deliver, store, protect and handle products to site under provisions of Section 26 0500.
- B. Accept controllers on site in original packing. Inspect for damage.
- C. Store in a clean, dry space. Maintain factory wrapping or provide an additional heavy canvas or heavy plastic cover to protect units from dirt, water, construction debris, and traffic.

D. Handle in accordance with manufacturer's written instructions. Lift only with lugs provided for the purpose. Handle carefully to avoid damage.

1.06 OPERATION AND MAINTENANCE DATA

- A. Submit operation and maintenance data under provisions of Section 26 0500.
- B. Maintenance Data: Include spare parts data listing, source and current prices of replacement parts and supplies, and recommended maintenance procedures and intervals.
- C. Operation Data: Include instructions for starting and operating controllers, and describe operating limits that may result in hazardous or unsafe conditions.
- D. Shop Drawings: For each VFD.
 - 1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 - a. Each installed unit's type and details.
 - b. Nameplate legends.
 - c. Short-circuit current rating of integrated unit.
 - d. Features, characteristics, ratings, and factory settings of each motor-control center unit.
 - 2. Wiring Diagrams: Power, signal, and control wiring for VFDs. Provide schematic wiring diagram for each type of VFD.

PART 2 - PRODUCTS

2.01 ACCEPTABLE MANUFACTURERS

- A. Variable Torque Applications:
 - 1. Toshiba Q9 Series
 - 2. ABB ACH 580 (HVAC) / ACS 580 (other applications) Series
 - 3. Allen Bradley PowerFlex Series
 - 4. Danfoss VLTFC100 Series
 - 5. Mitsubishi FR-F800 Series
 - 6. Square D, S-Flex / ATV660 Series
 - 7. Eaton MMX / HMX / SVX Series
 - 8. Yaskawa Z1000 Series
 - 9. Engineer pre-approved equivalent
- B. The Variable Frequency Drive Schedule and drawings use equipment tags to define the scope of the project. The equipment tag (example: VFD-5) may be representative of multiple similar applications. Additional options and accessories may be required by the specifications and manufacturer recommendations due to the specific application but not represented in the Variable Frequency Drive Schedule. Refer to the Options, Accessories, and minimum performance requirements of this specification for a complete list of requirements (example: output filters and shielded VFD cables).
- C. Motor Nameplate (Drive Output) Voltage: Refer to Variable Frequency Drive Schedule and Mechanical Schedules when applicable.

2.02 MINIMUM PERFORMANCE, REQUIRED OPTIONS, AND ACCESSORIES

- A. The following minimum performance requirements, options, and accessories supplement the requirements of the Variable Frequency Drive Schedule. In the event of a conflict between the schedule and specification the most stringent requirement will be enforced.
 - 1. Manual Speed Adjustment
 - 2. Electronic Thermal Overloads
- 3. Control Transformer, Fused, 120 volt. Acceptable Alternative, 120 volt / 24 volt power supply available directly from VFD, 100mA minimum.
- 4. Hand-off-Auto Door Switch
- 5. Skip Frequency Capability
- B. VFD Output Load Terminals Minimum Design Requirements:
 - 1. Provide external output line reactors, DV/DT, sine filters, and shielded VFD cable when the manufacturer's recommended maximum distance between the VFD and the motor(s) is exceeded.
 - 2. Provide the following minimum design criteria in addition to manufacturer recommendations:
 - a. Output line reactor (3 percent): When recommended by manufacturer.

2.03 VFD DESCRIPTION, RATINGS, DESIGN

- A. Pulse Width Modulated (PWM) Variable Frequency Drives:
 - 1. Converter shall be of a diode bridge design with a sine-weighted PWM inverter section. Converts 60 Hertz input power at voltage specified to a variable AC frequency and voltage for controlling the speed of AC motors. The controller shall be suitable for use with standard inverter duty motors without requiring any modifications to the motor or the drive.
 - 2. Drives shall be capable of use with commercially available Internal Permanent Magnet (IPM) motors up to 12 poles.
 - 3. Main semi-conductors in the inverter section of controller shall be IGBT transistors capable of a carrier switching frequency of up to 8 kHz.
 - a. 50HP applications and less: If derating of the inverter is necessary to run at 8kHz, then the unit's derated currents must equal or exceed the motor full load currents listed in NEC Table 430-150.
- B. Short Circuit Current Rating SCCR Default: 100 KA. Provide integral circuit breaker or fuse switch with disconnect switch when required to achieve rating.
- C. Drive and controller shall be capable of continuous full load operations throughout the following specified environmental operating conditions. Drive shall be capable of operation in the 'forward' and 'reverse' direction.
 - 1. Operating Ambient Temperature: 0°C to 40°C.
 - 2. Minimum Relative Humidity Range: 5% to 90% (non-condensing).
 - 3. Minimum Elevation without Derating: 3300 feet.
 - 4. The VFD shall incorporate a protective coating on the main control board to conform to IEC60721-3-3 class 3C2 levels.
- D. Input Voltage Performance: The drive shall provide full rated output from a line voltage range of -15 / +10% nominal voltage.
- E. Controller shall have the functional components listed below:
 - 1. Door interlocked input circuit breaker/fused switch.
 - 2. Input rectifier section to supply fixed DC bus voltage.
 - 3. Smoothing reactor or choke for DC bus.
 - 4. DC bus capacitors.
 - 5. Control transformer or switch mode powered from all three phases.
 - 6. Separate terminal blocks for power and control wiring.
 - 7. Terminal block for operator controls.
 - 8. Sine weighted PWM generating inverter section.

- F. Enclosure Fabrication:
 - 1. Enclosure: NEMA 250, Type 1, unless otherwise specified.
 - 2. Finish: Manufacturer's standard enamel.
 - 3. Devices shall be factory installed in controller enclosure and functionally tested unless otherwise indicated.
- G. Displays: Provide integral digital display to indicate all protection faults and drive status (including overcurrent, overvoltage, undervoltage, ground fault, overtemperature, phase loss, input power ON, output voltage, output frequency, and output current). Include meters or digital readout devices and selector switch, mounted flush in controller door and connected to indicate the following controller parameters:
 - 1. Output frequency (Hz).
 - 2. Motor speed (rpm).
 - 3. Motor status (running, stop, fault).
 - 4. Motor current (amperes).
 - 5. Motor torque (percent).
 - 6. Fault or alarming status (code).
 - 7. PID feedback signal (percent).
 - 8. DC-link voltage (VDC).
 - 9. Set-point frequency (Hz).
 - 10. Motor output voltage (V).
- H. Status Indication Door-mounted display shall indicate the following conditions:
 - 1. Power on.
 - 2. Run.
 - 3. Overvoltage.
 - 4. Line fault.
 - 5. Overcurrent.
 - 6. External fault.
- I. Historical Logging Information and Displays:
 - 1. Real-time clock with current time and date.
 - 2. Running log of total power versus time.
 - 3. Total run time.
 - 4. Fault log, maintaining last four faults with time and date stamp for each.
- J. Panel-Mounted Operator Station or KeyPad, Start-stop, auto-manual selector switches with manual speed control potentiometer, and elapsed time meter: NEMA ICS 2, heavy-duty type.
- K. Stop and Lockout Push-Button Station: Momentary-break, push-button station with a factory-applied hasp arranged so padlock can be used to lock push button in depressed position with control circuit open.
- L. Control Relays: Auxiliary and adjustable time-delay relays.
- M. Protection:
 - 1. Input transient protection by means of surge suppressors or equivalent protection.
 - 2. Snubber networks to protect against malfunctions due to system transients.
 - 3. Under- and overvoltage trips; inverter overtemperature, overload, and overcurrent trips.
 - 4. Power-Interruption Protection: After a power interruption, it prevents the motor from re-energizing until the motor has stopped.

- 5. Motor thermal overload relay(s) adjustable and capable of NEMA Class 20 motor protection and sized per motor nameplate data. When multiple motors are connected to the VFD output, each motor shall have a manual starter with properly sized overload protection.
- 6. Notch filter to prevent operation of the controller-motor-load combination at a natural frequency of the combination. Skip frequency feature is acceptable.
- 7. Instantaneous line-to-line and line-to-ground overcurrent trips on input and output.
- 8. Loss-of-phase protection.
- 9. Short-circuit protection (fuses or circuit breaker).
- 10. Motor overtemperature fault.
- 11. Loss of load protection.
- N. For a fault condition other than an internal fault, an auto restart function shall provide up to 10 programmable restart attempts. The programmable time delay before each restart shall range from 0 to 10 seconds.
- O. The deceleration ramp of the controller shall be programmable for normal and fault conditions. Stop modes shall include: DC injection braking, controlled deceleration to stop and coast to stop.
- P. Upon loss of the analog speed reference signal the following shall be selectable:
 - 1. The VFD follows the programmed deceleration ramp to a controlled stop.
 - 2. The VFD holds the speed based upon the last good value and trigger a warning alarm.
- Q. The VFD operates at a pre-determined frequency (user programmable).
- R. STOP key on the keypad shall be functional at all time, drive mode insensitive.
- S. The VFD shall be insensitive to input power phase sequence. Input phase loss detection shall be available.
- T. The output frequency shall be parameter setting enabled to fold back when the motor is overloaded (stall prevention).
- U. An optional real time clock feature shall be available, which must facilitate the time stamping of any drive trip messages.
- V. The VFD shall monitor the main circuit capacitors, control circuit capacitor, in-rush suppression circuit, and cooling fan and shall provide a pre-alarm so that maintenance can be scheduled.
- W. The VFD shall include an output timer function so that peripheral equipment maintenance can be scheduled.
- X. The VFD shall include parameter selectable input and output phase loss protection.
- Y. The VFD basic insulation level shall be tested based upon ANSI/IEEE C62.41-1999.
- Z. The VFD shall be rated as a safety VFD (STO) EN ISO 13849-1 PLd/Cat.3, EN61508, and EN61800-5-2 SIL 1 without additional options.
- AA. Displacement Power Factor: Between 1.0 and 0.95, lagging, over entire range of operating speed and load.
- BB. Minimum Efficiency at Full Load: 96 percent.
- CC. Overload Capability: 1.1 times the base load current for 60 seconds every 10 minutes; 1.3 times the base load current for 2 seconds every minute.
- DD. Starting Torque: 100 percent of rated torque or as indicated.
- EE. Speed Regulation: Plus or minus 1 percent with no motor derating.
- FF. All drives shall have built-in diagnostic capability with status and fault indicators mounted on enclosure door. Complete operating instructions for diagnostics shall be mounted inside of the enclosure door.
- GG. The drive shall provide self-protection when the load is lost or disconnected without damage to the drive.
- HH. Acceleration Rate Adjustment: 0.5 30 seconds.

- II. Deceleration Rate Adjustment: 1 30 seconds.
- JJ. Minimum Adjustment Range for the Output Frequency shall be: 0 to 90 Hertz.
- KK. Minimum Volts/Hertz Range: 3.7 to 8.6 volts/Hertz.
- LL. Provide MANUAL-OFF-AUTOMATIC selector switch and manual analog speed control mounted on the front of the enclosure.
- MM. Safety Interlocks: Provide terminals for remote contact to inhibit starting under both manual and automatic mode.
- NN. Control Interlocks: Provide terminals for remote contact to allow starting in automatic mode.
- OO. Provide adjustable skip frequencies on the drive output (minimum of three ranges).
- PP. Automatic Reset/Restart: Attempts up to 10 restarts after controller fault, on return of power after an interruption, or on undervoltage fault, and before shutting down for manual reset or fault correction. Bidirectional autospeed search shall be capable of starting into rotating loads spinning in either direction and returning motor to set speed in proper direction, without damage to controller, motor, or load (coasting motor re-start).
- QQ. Excitation Control will regulate motor output voltage based on torque requirement. Must be able to provide full motor torque when necessary across the operating speed range.
- RR. Motor Temperature Compensation at Slow Speeds: Adjustable current fallback based on output frequency for temperature protection of self-cooled, fan-ventilated motors at slow speeds.
- SS. Control Transformer: Provide control power transformer for control, 120 volt secondary, fused.
- TT. Control Signal Interface:
 - 1. Electric Input Signal Interface: A minimum of 2 analog inputs (0 to 10 V or 0/4-20 mA) and 6 programmable digital inputs.
 - 2. Remote Signal Inputs: Capability to accept any of the following speed-setting input signals from the BMS or other control systems:
 - a. 0 to 10-V dc.
 - b. 0-20 or 4-20 mA.
 - c. Potentiometer using up/down digital inputs.
 - d. Fixed frequencies using digital inputs.
 - e. RS485.
 - f. Ethernet.
 - g. Keypad display for local hand operation.
 - 3. Output Signal Interface:
 - a. A minimum of 1 analog output signal (0/4-20 mA), which can be programmed to any of the following:
 - 1) Output frequency (Hz).
 - 2) Output current (load).
 - 3) DC-link voltage (VDC).
 - 4) Motor torque (percent).
 - 5) Motor speed (rpm).
 - 6) Set-point frequency (Hz).
 - 4. Remote Indication Interface: A minimum of 2 dry circuit relay outputs (120-V ac, 1A) for remote indication of the following:
 - a. Motor running.
 - b. Set-point speed reached.

- c. Fault and warning indication (overtemperature or overcurrent).
- d. PID high- or low-speed limits reached.
- 5. The control power for the VFD digital inputs and outputs shall be 24Vdc, selectable to sink or source. Optional 120Vac control power for the digital inputs and outputs shall be available.
- 6. The drive control board shall be capable of operating from an independent 24V dc power supply.
- 7. All logic connections shall be furnished on a removable terminal strip.
- 8. External devices shall be able to be connected to the terminal strip for starting/stopping the VFD, speed control and indicating operation status.
- 9. Speed command input shall be by means of:
 - a. Keypad.
 - b. Analog input.
 - c. Serial communications.
 - d. Ethernet communications.
- UU. Communications: Provide a communications card to interface VFD with Facility Management Control System (FMCS). Coordinate interface requirements with the FMCS provided under Section 23 0900. Interface shall allow all parameter settings of VFD to be programmed via FMCS control and displayed on FMCS operator workstation. Provide capability for VFD to retain these settings within the nonvolatile memory.
- VV. Control:
 - 1. With the "Manual-Off-Auto" switch in the "Manual" position and, if applicable, the "Drive-Bypass" in the "Drive" position, the drive shall be controlled by the manual speed potentiometer on the drive door or keypad.
 - 2. With the "Manual-Off-Auto" switch in the "Auto" position and, if applicable, the "Drive-Bypass" in the "Drive" position, the drive shall be controlled by the input signal from an external source.
 - 3. If applicable, with the "Drive-Bypass" in the "Bypass" position, regardless the position of the "Manual-Off-Auto" switch, the motor shall be connected across the lines and shall be run at full speed.
 - 4. With the "Manual-Off-Auto" switch in the "Off" position, if applicable, the drive run circuit shall be open and the VFD shall not operate.
 - 5. If applicable, signal from the fire alarm control panel shall shut down VFD and bypass to direct-online operation. In this mode the thermal overload relay for the motor must be disabled.
- WW. All disconnect switches between VFD and motor(s) shall include an auxiliary contact interlock wired to the VFD fault trip input to shut down the drive upon opening of the disconnect main contacts.
- XX. Electronic Thermal Overloads: Provide adjustable electronic type thermal overloads. Size protection per motor nameplate data.

PART 3 - EXECUTION

3.01 FACTORY TESTING

- A. Refer to startup and commissioning requirements.
- B. The VFD and all associated controller components shall be covered by a supplier parts warranty of 2 years from the time of installation. There shall be an option to extend the warranty to 5 years if initial installation is carried out by a supplier-approved contractor.

3.02 STARTUP AND COMMISSIONING

A. The Electrical Contractor shall have a factory service engineer present for the start-up, field calibration, and check-out of each VFD installed. Factory service engineer shall be required to return to the site for recalibration or set-up should unit not function as specified during system commissioning. All costs shall be a part of This Contract. Provide tag with date and signature of factory service Engineer on inside cover of each drive.

- B. Verify all settings, parameters, and adjustments with other contractors prior to startup. Make all adjustments and setting to coordinate with controls and equipment.
- C. Accelerate the motor to full speed and verify operation. Decelerate the motor to a stop and verify operation. Slowly operate the motor over the speed range and check for resonance.
- D. Make all adjustments and settings to coordinate with controls and equipment prior to Substantial Completion. Verify that drive is set for auto restart after power loss and undervoltage fault.
- E. Document settings in the Operations and Maintenance manual.

END OF SECTION

SECTION 28 3100

FIRE ALARM AND DETECTION SYSTEMS

PART 1 - GENERAL

1.01 RELATED WORK

A. Section 26 0553 - Electrical Identification: Refer to electrical identification for color and identification labeling requirements.

1.02 QUALITY ASSURANCE

- A. Manufacturer: Company specializing in smoke detection and fire alarm systems.
- B. Qualifications: The person managing/overseeing the preparation of shop drawings and the system installation/programming/testing shall be trained and certified by the system manufacturer and shall be Fire Alarm Certified by NICET, minimum Level 2. This person's name and certification number shall appear on the start-up and testing reports.

1.03 REFERENCES

- A. ASME A17.1 Safety Code for Elevators and Escalators
- B. NFPA 20 Standard for Centrifugal Fire Pumps
- C. NFPA 70 National Electrical Code (NEC)
- D. NFPA 72 National Fire Alarm and Signaling Code
- E. NFPA 101 Life Safety Code
- F. UL 2017 General Purpose Signaling Devices and Systems
- G. UL 217 / 268 Standard for Smoke Alarms / Smoke Detectors for Fire Alarm Systems

1.04 SUBMITTALS

- A. Submit shop drawings and product data under provisions of Section 26 0500 and as noted below.
 - 1. Failure to comply with all the following and all the provisions in 26 05 00 will result in the shop drawing submittal being rejected without review.
 - 2. Failure to submit the fire alarm without all requirements fulfilled in a single comprehensive submittal will be grounds to require a complete resubmittal.
- B. Provide product catalog data sheets as shop drawings.
 - 1. Provide a product catalog data sheet for each item shown on the Electrical Symbols List and for each piece of equipment that is not shown on the drawings, but required for the operation of the system.
 - 2. Where a particular Electrical Symbols List item has one or more variations (such as those denoted by subscripts, etc.) a separate additional product catalog data sheet shall be provided for <u>each</u> variation that requires a different part number to be ordered. The corresponding Electrical Symbols List symbol shall be shown on the top of each sheet.
 - 3. Where multiple items and options are shown on one data sheet, the part number and options of the item to be used shall be clearly denoted.
- C. Submit CAD Floor Plans as Shop Drawings:
 - 1. The complete layout of the entire system, device addresses, auxiliary equipment, and manufacturer's wiring requirements shall be shown.
 - Indicate the precise routing of notification appliance circuits under the provisions of circuit survivability. Refer to "Wiring" under Part 3 - Execution of this specification section for requirements.
 - 3. A legend or key shall be provided to show which symbols shown on the submittal floor plans correspond with symbols shown on the Contract Documents.

- D. About all fire alarm circuits, provide the following: manufacturer's wiring requirements (manufacturer, type, size, etc.) and voltage drop calculations.
- E. Provide installation and maintenance manuals under provisions of Section 26 0500.
- F. Submit manufacturer's certificate that system meets or exceeds specified requirements.
- G. Provide information on the system batteries as follows: total battery capacity, total capacity used by all devices on this project, total available future capacity.
- H. Submit photocopy proof of NICET certification of the person overseeing the preparation of drawings and installation/testing.
- I. When required to comply with local or state regulatory reviews, the fire alarm submittal shall have a NICET Certification of the state in which the project is completed. NOTE: The Architect/Engineer cannot stamp and seal submittal drawings not prepared under their supervision.

1.05 DELIVERY, STORAGE, AND HANDLING

- A. Deliver products to site under provisions of Section 26 0500.
- B. Store and protect products under provisions of Section 26 0500.

1.06 REGULATORY REQUIREMENTS

- A. System: UL or FM Global listed.
- B. Conform to requirements of NFPA 101.
- C. Conform to requirements of Americans with Disabilities Act (ADA).
- D. Conform to UL 864 Fire Alarm, UL 1076 Security, UL2017 General Signaling, and UL 2572 Mass Notification Communications.

1.07 SYSTEM DESCRIPTION

- A. Performance Statement: This specification section and the accompanying fire alarm specific design documents describe the minimum material quality, required features, and operational requirements of the system. These documents do not convey every wire that must be installed and every equipment connection that must be made. Based on the equipment described and the performance required of the system, as presented in these documents, the Vendor and the Contractor are solely responsible for determining all wiring, programming and miscellaneous equipment required for a complete and operational system.
- B. This section of the specifications includes the furnishing, installation and connection of the microprocessor controlled, intelligent reporting, fire alarm equipment required to form a complete coordinated system that is ready for operation. It shall include, but is not limited to, alarm initiating devices, control panels, auxiliary control devices, annunciators, power supplies, and wiring as indicated on the drawings and specified herein.
- C. Extending the Existing Fire Alarm System: Provide all items, components, devices, hardware, software, programming, expansion components, conduit, wiring etc. needed to extend the existing fire alarm system. This includes, but is not limited to, additional power supplies, initiating devices and circuits, signaling devices and circuits, monitoring devices and circuits, auxiliary control and related devices such as, door holders and their control, smoke damper control, fan shutdown, etc. The existing fire alarm system shall be extended such that the existing fire alarm system's functionality, integrity and annunciation shall be equivalent to pre-construction conditions, unless noted otherwise. The functionality and integrity shall be maintained during construction. The entire system shall be able to be completely reset from any single reset location point. The entire system shall be annunciated at any annunciation location.

- D. Extending the Existing Simplex 4100U Fire Alarm System: The existing control panel shall remain and shall be operational throughout construction. The system shall only be disabled to make new connections and to modify the programming. A fire watch shall be provided for all areas affected during outages. All system outages must be scheduled with the Owner at least one week prior. Individual devices may be disabled as needed based on construction activities to reduce the potential for false alarms, but all devices must be operational when the Contractor is not physically on site. New initiating devices may be connected to the existing signaling line circuits where capacity is available. Provide additional signaling line circuits as needed based on existing and new device quantity, including replacement of existing panel components. Provide new notification circuits to serve the new devices, including all necessary power supplies, amplifiers, batteries, and 120-volt input circuits. All new devices shall be programmed to provide the same sequence of operation as the existing devices of the same type, unless noted otherwise.
- E. Fire Alarm System: NFPA 72; Automatic and manual fire alarm system, non-coded, analog-addressable with automatic sensitivity control of certain detectors, multiplexed signal transmission.
- F. System Supervision: Provide electrically supervised system, with supervised Signal Line Circuit (SLC) and Notification Appliance Circuit (NAC). Occurrence of single ground or open condition in initiating or signaling circuit places circuit in TROUBLE mode. Component or power supply failure places system in TROUBLE mode.
- G. Alarm Reset: Key-accessible RESET function resets alarm system out of ALARM if alarm initiating circuits have cleared.
- H. Lamp Test: Manual LAMP TEST function causes alarm indication at each zone at fire alarm control panel and at annunciator panels.
- I. Drawings: Only device layouts and some equipment have been shown on the contract drawings. Wiring and additional equipment to make a complete and functioning system has not been shown, but shall be submitted on the shop drawings.

1.08 PROJECT RECORD DOCUMENTS

- A. Submit documents under the provisions of Section 26 0500.
- B. Include location of end-of-line devices.
- C. Provide a CAD drawing of each area of the building (minimum scale of 1/16" = 1'-0") showing each device on the project and its address. The devices shall be shown in their installed location and shall be labeled with the same nomenclature as is used in the fire alarm panel programming.
- D. Submit test results of sound pressure level (dBA) and intelligibility (STI) with the rooms tested designated on the floor plan. Notification devices shall have the tap wattage designated.

1.09 OPERATION AND MAINTENANCE DATA

- A. Submit data under provisions of Section 26 0500.
- B. Include operating instructions, and maintenance and repair procedures.
- C. Include results of testing of all devices and functions.
- D. Include manufacturer's representative's letter stating that system is operational.
- E. Include the CAD floor plan drawings.
- F. Include shop drawings as reviewed by the Architect/Engineer and the local Authority Having Jurisdiction.

1.10 WARRANTY

- A. Provide one (1) year warranty on all materials and labor from Date of Substantial Completion.
- B. Warranty requirements shall include furnishing and installing all software upgrades issued by the manufacturer during the one (1) year warranty period.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Johnson Controls - Simplex, to match existing system.

2.02 FIRE ALARM PATHWAY CLASS AND SURVIVABILITY LEVEL

- A. Pathway Class:
 - 1. Pathway Class: SLC for addressable devices with less than 50 devices can be Class A or B, and more than 50 devices shall be Class A.
- B. Pathway Survivability Level:
 - 1. Pathway Survivability Level 0: Circuits have no requirements for pathway survivability beyond the requirements of the code.
 - 2. Shared Pathway Designation Level 1: Physical segregation of life safety and non-life safety data is not required. Life safety data shall be the priority.

2.03 SIGNALING LINE CIRCUIT DEVICES

- A. Combination Devices: Subscripts identify combination type devices when applicable. Contractor shall provide the combination device or provide multiple device(s) to meet the functionality when the manufacturer does not offer the required functionality with a single device.
- B. Signal Line Device(s):
 - 1. Subscripts: Subscripts are used to define the device type, installation, and identify the device with a specific sequence of operation.
 - a. Device type as follows:
 - 1) Candela Ratings:
 - a) ## = 15 Candela, 30 Candela; 75 Candela; 110 Candela; 177 Candela
 - b) CD = NICET designer shall select Candela rating as required to provide full coverage of the space.
 - b. Sequence of operation as follows:
 - 1) D = HVAC Control
- C. FA-122; Duct Smoke Detectors, Sampling Tube Type:
 - 1. Subscripts are used to define the device type, installation, and identify the device with a specific sequence of operation.
 - a. Device types as follows:
 - 1) # = Equipment or system
 - b. Duct-type smoke detectors shall use the same analog photoelectric sensor technology, with the same features specified for standard smoke detectors, except with additional features as specified below.
 - c. Provide sampling tubes and mounting hardware to match the duct to which it is attached. Where the detector housing is larger than the duct height, Contractor shall fabricate a mounting bracket for the detector and attach according to the fire alarm manufacturer's recommendations.
 - d. Provide a remote alarm LED indicator device (FA-241) or (FA-242) if detector is not visible from a floor-standing position. If detector is located above a suspended ceiling, mount remote indicator in ceiling directly below detector with a white single-gang faceplate labeled: Duct Smoke Detector.
- D. FA-161; Addressable Control Module:
 - 1. Subscripts are used to define the device type, installation, and identify the device with a specific sequence of operation.
 - a. Device types as follows:
 - 1) Blank = Refer to Plans

- 2. Relay that represents an addressable control point used primarily for the control of auxiliary devices as indicated on the drawings. Contractor to provide additional child relay(s), as required, rated for the electrical load being controlled (Contractor to match voltage, amps, etc.).
- 3. Relay shall connect directly to an SLC loop and receive power from a separate 24 VDC circuit.
- 4. The relay shall be mounted in an enclosure located in an accessible service location as near as possible to the device(s) being controlled, unless otherwise shown on the drawings. All mounting hardware shall be provided.
- 5. The relay shall supply 24 VDC power to the device(s) being controlled, unless otherwise indicated on the drawings.

2.04 NOTIFICATION APPLIANCE CIRCUIT PANEL (NAC)

- A. As shown on the plans or as a Contractor's option if not shown, furnish and install NAC extender panels as necessary to provide remote power supply for notification appliance circuits (NAC). Contractor shall indicate quantity and locations of each NAC on the shop drawing submittals.
- B. Each NAC shall be self-contained remote power supply with batteries, and battery charger mounted in a surface lockable cabinet. Battery capacity shall be sufficient for operation for 24 hours in a non-alarm state followed by alarm for 15 minutes, plus 25% spare capacity for future devices. Each NAC provides a minimum of up to 4 outputs, 2A continuous, or 6A full load total capacity.
- C. Power for each NAC shall be from a local 120 VAC circuit. Provide two #12 conductors and one #12 ground in 1/2" conduit to each NAC from a dedicated 20A/1P circuit breaker with a red handle and a manufacturer's standard handle lock-on device. Coordinate panel and circuit number with the Architect/Engineer prior to installation.
- D. NAC extender panels may be installed only in locations coordinated with the Architect/Engineer.
- E. Mounting: Surface.

2.05 ANNUNCIATION

- A. FA-241; Fire Alarm Remote Indicator:
 - 1. Red LED type.
 - 2. Mounts flush to a single gang box.
- B. FA-242; Fire Alarm Remote Indicator and Test Switch:
 - 1. Red LED type.
 - 2. Key switch test selector.
 - 3. Mounts flush to a single gang box.

2.06 WIRING

- A. Fire alarm wiring/cabling shall be furnished and installed by the Contractor in accordance with the manufacturer's recommendations and pursuant to National Fire Codes. Cabling shall be UL listed and labeled as complying with the Electrical Code for power-limited fire alarm signal service.
- B. Fire Alarm Cable:
 - 1. Manufacturers:
 - a. Comtran Corp.
 - b. Helix/HiTemp Cables, Inc.
 - c. Rockbestos-Suprenant Cable Corp.
 - d. West Penn Wire/CDT.
 - e. Radix.
 - f. Engineer pre-approved equivalent

PART 3 - EXECUTION

3.01 SEQUENCES OF FIRE ALARM OPERATION

- A. General:
 - 1. Refer to the Fire Alarm Operation Matrix on the drawings for basic requirements and system operation.
 - 2. All system output programs assigned via control-by-event equations to be activated by the particular point in alarm shall be executed, and the associated system outputs (alarm notification appliances and/or relays) shall be activated.
- B. Panel/Annunciator Alarm, Trouble, Supervisory Indication:
 - 1. Appropriate system Alarm, Trouble, or Supervisory LED shall flash at the control panel, transponder, and annunciator locations.
 - 2. A local signal in the control panel shall sound.
 - 3. The LCD display shall indicate all information associated with the condition, including the name of the item, type of device and its location within the protected premises.
 - 4. History storage equipment shall log the information associated with the fire alarm control panel (FAP) condition, along with the time and date.
 - 5. Transmit the appropriate signal (supervisory, trouble, alarm) to the central station via the digital communicator.
 - 6. Transmit the appropriate signal (supervisory, trouble, alarm) to the building automation system via addressable relays tied to contact monitors on the system.
- C. Audible Alarms Sequence:
 - 1. Audible alarms throughout the building shall sound.
- D. Visual Alarms Sequence:
 - 1. Visual alarms throughout the building shall flash.
- E. AHU and Mechanical Fan Shutdown Sequence:
 - 1. The fire alarm system shall utilize addressable relays to de-energize all AHU motor controllers and mechanical fans. Coordinate other requirements with HVAC installer.
 - 2. The fire alarm system shall directly shut down the AHU or mechanical fan through the local HVAC control device (i.e., variable frequency drive or motor starter).
 - 3. Where a facility has more than one AHU or mechanical fan, each shall be shutdown individually based on input from initiation devices in the area served by the unit or designated for each air distribution system.

3.02 INSTALLATION

- A. Install system in accordance with manufacturer's instructions and referenced codes.
- B. Devices:
 - 1. General:
 - a. All ceiling-mounted devices shall be located where shown on the reflected ceiling and floor plans. If not shown on the reflected ceiling or reflected floor drawings, the devices shall be installed in the relative locations shown on the floor drawings in a neat and uniform pattern.
 - b. All devices shall be coordinated with luminaires, diffusers, sprinkler heads, piping and other obstructions to maintain a neat and operable installation. Mounting locations and spacing shall not exceed the requirements of NFPA 72.
 - c. Where the devices are to be installed in a grid type ceiling system, the detectors shall be centered in the ceiling tile.

- d. The location of all fire alarm devices shall be coordinated with other devices mounted in the proximity. Where a conflict arises with other items or with architectural elements that will not allow the device to be mounted at the location or height shown, the Contractor shall adjust location of device so that new location meets all requirements in NFPA 72 and all applicable building codes.
- 2. Per the requirements of NFPA, detector heads shall not be installed until after the final construction cleaning unless required by the local Authority Having Jurisdiction (AHJ). If detector heads must be installed prior to final cleaning (for partial occupancy, to monitor finished areas or as otherwise required by the AHJ), they shall not be installed until after the fire alarm panel is installed, with wires terminated, ready for operation. Any detector head installed prior to the final construction cleaning shall be removed and cleaned prior to closeout.
- 3. Protection of Fire Alarm System:
 - a. A smoke detector shall be installed within the vicinity of the main fire alarm panel and every NAC extender panel per NFPA 72. A heat detector may be substituted when a smoke detector is not appropriate for the environment of installation.
- 4. Duct-type Analog Smoke Detectors:
 - a. Duct-type analog smoke detectors shall be installed on the duct where shown on the drawings and details. The sampling tubes shall be installed in the respective duct at the approximate location where shown on the electrical drawings to meet the operation requirements of the system.
 - b. All detectors shall be accessible.
 - c. Duct-type detectors shall be installed according to the manufacturer's instructions.
- 5. Addressable Relays:
 - a. Modules shall be located as near to the respective monitor or control devices as possible, unless otherwise indicated on the drawings.
 - b. All modules shall be mounted in or on a junction box in an accessible location.
 - c. Where not visible from a floor standing position, a remote indicator shall be installed to allow inspection of the device status from a local floor standing location.
- 6. SLC Loop Isolation Modules:
 - a. Isolation modules shall be installed to limit the number of addressable devices that are incapacitated by a circuit fault.
 - b. Install all Isolation Modules within the fire alarm control panel, unless otherwise indicated on the drawings. Refer to the fire alarm riser diagram for requirements. Refer to the floor plans for areas served by separate isolation modules.
- C. Wiring:
 - 1. Fire alarm wiring/cabling shall be provided by the Contractor in accordance with the manufacturer's recommendations and pursuant to National Fire Codes.
 - 2. Wiring shall be installed in conduit.
 - 3. All junction boxes with SLC and NAC circuits shall be identified on cover. Refer to Identification Section 26 0513 for color and identification requirements.
 - 4. Fire Alarm Power Branch Circuits: Building wiring as specified in Section 26 0513.
 - 5. Notification Appliance Circuits shall provide the features listed below. These requirements may require separate circuits for visual and audible devices.
 - a. Fire alarm temporal audible notification for all audio appliances.
 - b. Synchronization of all visual devices where two or more devices are visible from the same location.

- c. Ability to silence audible alarm while maintaining visual device operation.
- d. Emergency communication alert and textual visible appliance notification.
- 6. Notification Appliance Circuits shall not span floors.
- 7. Signal line circuits connecting devices shall not span floors.
- 8. No wiring other than that directly associated with fire alarm detection, alarm or auxiliary fire protection functions shall be in fire alarm conduits. Wiring splices shall be avoided to the extent possible, and if needed, they shall be made only in junction boxes, and enclosed by plastic wire nut type connectors. Transposing or changing color coding of wires shall not be permitted. All conductors in conduit containing more than one wire shall be labeled on each end, in all junction boxes, and at each device with "E-Z Markers" or equivalent. Conductors in cabinets shall be carefully formed and harnessed so that each drops off directly opposite to its terminal. Cabinet terminals shall be numbered and coded, and no unterminated conductors are permitted in cabinets or control panels. All controls, function switches, etc. shall be clearly labeled on all equipment panels.
- D. Fire Alarm Cabling Color Code: Provide circuit conductors with insulation color coding as follows, or using colored tape at each conductor termination and in each junction box.
 - 1. Power Branch Circuit Conductors: In accordance with Section 26 0553.
 - 2. Signaling Line Circuit: Overall red jacket with black and red conductors.
 - 3. DC Power Supply Circuit: Overall red jacket with violet and brown conductors.
 - 4. Notification Appliance Circuit: Overall red jacket with blue and white conductors.
- E. Make conduit and wiring connections to door release devices, sprinkler flow and pressure switches, sprinkler valve monitor switches, fire suppression system control panels, duct analog smoke detectors and all other system devices shown or noted on the Contract Documents or required in the manufacturer's product data and shop drawings.

3.03 FIELD QUALITY CONTROL

- A. Field inspection and testing will be performed under provisions of Section 26 0500.
- B. Test in accordance with NFPA 72, Chapter 14 and local fire department requirements. Submit documentation with O & M manuals in accordance with Section 14.6 of the Code.

END OF SECTION