

Character Builder
Minimum experience:​ Grades 3+, 1st year using Scratch, 2nd quarter or later

At a Glance

Overview and Purpose

Coders learn how to design custom costumes to create a customized character builder for a selected theme. The purpose of
this project is to reinforce understandings of messages while introducing new features in Scratch.

Objectives and Standards

Process objective(s): Product objective(s):

Statement:
● I will learn how to create custom costumes in

Scratch.
Question:

● How can we create custom costumes in Scratch?

Statement:
● I will create a character builder with different options

for user customization.
Question:

● How can we create a character builder with different
options for user customization?

Main standard(s): Reinforced standard(s):

1B-AP-10​ Create programs that include sequences, events,
loops, and conditionals

● Control structures specify the order (sequence) in
which instructions are executed within a program
and can be combined to support the creation of
more complex programs. Events allow portions of a
program to run based on a specific action. For
example, students could write a program to explain
the water cycle and when a specific component is
clicked (event), the program would show information
about that part of the water cycle. Conditionals allow
for the execution of a portion of code in a program
when a certain condition is true. For example,
students could write a math game that asks
multiplication fact questions and then uses a
conditional to check whether or not the answer that
was entered is correct. Loops allow for the repetition
of a sequence of code multiple times. For example, in
a program that produces an animation about a
famous historical character, students could use a
loop to have the character walk across the screen as
they introduce themselves. (​source​)

1B-AP-09 ​Create programs that use variables to store and
modify data.

● Variables are used to store and modify data. At this
level, understanding how to use variables is sufficient.
For example, students may use mathematical
operations to add to the score of a game or subtract
from the number of lives available in a game. The use
of a variable as a countdown timer is another example.
(​source​)

1B-AP-11​ Decompose (break down) problems into smaller,
manageable subproblems to facilitate the program
development process.

● Decomposition is the act of breaking down tasks into
simpler tasks. For example, students could create an
animation by separating a story into different scenes.
For each scene, they would select a background, place
characters, and program actions. (​source​)

1B-AP-15​ Test and debug (identify and fix errors) a program or
algorithm to ensure it runs as intended.

● As students develop programs they should
continuously test those programs to see that they do
what was expected and fix (debug), any errors.
Students should also be able to successfully debug
simple errors in programs created by others. (​source​)

https://www.youtube.com/bootuppd?sub_confirmation=1
https://bootuppd.org/
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards

1B-AP-12​ Modify, remix, or incorporate portions of an
existing program into one's own work, to develop something
new or add more advanced features.

● Programs can be broken down into smaller parts,
which can be incorporated into new or existing
programs. For example, students could modify
prewritten code from a single-player game to create
a two-player game with slightly different rules, remix
and add another scene to an animated story, use
code to make a ball bounce from another program in
a new basketball game, or modify an image created
by another student. (​source​)

1B-AP-17​ Describe choices made during program development
using code comments, presentations, and demonstrations.

● People communicate about their code to help others
understand and use their programs. Another purpose
of communicating one's design choices is to show an
understanding of one's work. These explanations could
manifest themselves as in-line code comments for
collaborators and assessors, or as part of a summative
presentation, such as a code walk-through or coding
journal. (​source​)

Practices and Concepts
Source​: K–12 Computer Science Framework. (2016). Retrieved from ​http://www.k12cs.org​.

Main practice(s): Reinforced practice(s):

Practice 5: Creating computational artifacts
● "The process of developing computational artifacts

embraces both creative expression and the
exploration of ideas to create prototypes and solve
computational problems. Students create artifacts
that are personally relevant or beneficial to their
community and beyond. Computational artifacts can
be created by combining and modifying existing
artifacts or by developing new artifacts. Examples of
computational artifacts include programs,
simulations, visualizations, digital animations, robotic
systems, and apps." (​p. 80​)

● P5.2. ​Create a computational artifact for practical
intent, personal expression, or to address a societal
issue. (​p. 80​)

● P5.3.​ Modify an existing artifact to improve or
customize it. (​p. 80​)

Practice 1: Fostering an Inclusive Computing Culture
● "Building an inclusive and diverse computing culture

requires strategies for incorporating perspectives from
people of different genders, ethnicities, and abilities.
Incorporating these perspectives involves
understanding the personal, ethical, social, economic,
and cultural contexts in which people operate.
Considering the needs of diverse users during the
design process is essential to producing inclusive
computational products." (​p. 74​)

● P1.2. ​Address the needs of diverse end users during the
design process to produce artifacts with broad
accessibility and usability. (​p. 74​)

Practice 6: Testing and refining computational artifacts
● "Testing and refinement is the deliberate and iterative

process of improving a computational artifact. This
process includes debugging (identifying and fixing
errors) and comparing actual outcomes to intended
outcomes. Students also respond to the changing
needs and expectations of end users and improve the
performance, reliability, usability, and accessibility of
artifacts." (​p. 81​)

● P6.1. ​Systematically test computational artifacts by
considering all scenarios and using test cases." (​p. 81​)

● P6.2. ​Identify and fix errors using a systematic process.
(​p. 81​)

Practice 7: Communicating about computing
● "Communication involves personal expression and

exchanging ideas with others. In computer science,
students communicate with diverse audiences about
the use and effects of computation and the
appropriateness of computational choices. Students
write clear comments, document their work, and
communicate their ideas through multiple forms of
media. Clear communication includes using precise
language and carefully considering possible audiences."
(​p. 82​)

http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.k12cs.org/
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=84
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=84
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92

● P7.2.​ Describe, justify, and document computational
processes and solutions using appropriate terminology
consistent with the intended audience and purpose. (​p.
82​)

Main concept(s): Reinforced concept(s):

Control
● "Control structures specify the order in which

instructions are executed within an algorithm or
program. In early grades, students learn about
sequential execution and simple control structures.
As they progress, students expand their
understanding to combinations of structures that
support complex execution." (​p. 91​)

● Grade 5 -​ "Control structures, including loops, event
handlers, and conditionals, are used to specify the
flow of execution. Conditionals selectively execute or
skip instructions under different conditions." (​p. 103​)

Algorithms
● "Algorithms are designed to be carried out by both

humans and computers. In early grades, students learn
about age-appropriate algorithms from the real world.
As they progress, students learn about the
development, combination, and decomposition of
algorithms, as well as the evaluation of competing
algorithms." (​p. 91​)

● Grade 5 -​ "Different algorithms can achieve the same
result. Some algorithms are more appropriate for a
specific context than others." (​p. 103​)

Variables
● "Computer programs store and manipulate data using

variables. In early grades, students learn that different
types of data, such as words, numbers, or pictures, can
be used in different ways. As they progress, students
learn about variables and ways to organize large
collections of data into data structures of increasing
complexity." (​p. 91​)

● Grade 5 - ​"Programming languages provide variables,
which are used to store and modify data. The data type
determines the values and operations that can be
performed on that data." (​p. 103​)

Scratch Blocks

Primary blocks Events​, ​Looks

Supporting blocks Control​, ​Variables​, ​Motion​, ​Operators​, ​Sound

Vocabulary

Algorithm ● A step-by-step process to complete a task. (​source​)
● A formula or set of steps for solving a particular problem. To be an algorithm, a set of rules

must be unambiguous and have a clear stopping point. (​source​)

Costume ● One out of possibly many “frames” or alternate appearances of a sprite. A sprite can change its
look to any of its costumes. (​source​)

Debugging ● The process of finding and correcting errors (bugs) in programs. (​source​)
● To find and remove errors (bugs) from a software program. Bugs occur in programs when a line

of code or an instruction conflicts with other elements of the code. (​source​)

Event (trigger) ● An action or occurrence detected by a program. Events can be user actions, such as clicking a
mouse button or pressing a key, or system occurrences, such as running out of memory. Most
modern applications, particularly those that run in Macintosh and Windows environments, are
said to be event-driven,because they are designed to respond to events. (​source​)

http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=113
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=113
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=103
https://drive.google.com/open?id=0B342uiaCLSS3dDZNeGczOWRtazg
https://drive.google.com/open?id=0B342uiaCLSS3Y3lsTkRsR3Y0ajQ
https://drive.google.com/open?id=0B342uiaCLSS3NGRIdVVvTW95a3c
https://drive.google.com/open?id=0B342uiaCLSS3VzVIcWN2bnBFXzg
https://drive.google.com/open?id=0B342uiaCLSS3bW0xOWVMU0FMems
https://drive.google.com/open?id=0B342uiaCLSS3UXVLV2hiZkpVZ3M
https://drive.google.com/open?id=0B342uiaCLSS3aUlpb0xTRjJnd2M
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=269
http://www.webopedia.com/TERM/A/algorithm.html
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=139
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=271
http://www.webopedia.com/TERM/D/debug.html
http://www.webopedia.com/TERM/E/event.html

● The computational concept of one thing causing another thing to happen. (​source​)
● Any identifiable occurrence that has significance for system hardware or software.

User-generated events include keystrokes and mouse clicks; system-generated events include
program loading and errors. (​source​)

Scripts ● One or more Scratch blocks connected together to form a sequence. Scripts begin with an event
block that responds to input (e.g., mouse click, broadcast). When triggered, additional blocks
connected to the event block are executed one at a time. (​source​)

Variable ● A symbolic name that is used to keep track of a value that can change while a program is
running. Variables are not just used for numbers; they can also hold text, including whole
sentences (strings) or logical values (true or false). A variable has a data type and is associated
with a data storage location; its value is normally changed during the course of program
execution. (​source​)

● Variables play an important role in computer programming because they enable programmers
to write flexible programs. Rather than entering data directly into a program, a programmer can
use variables to represent the data. Then, when the program is executed, the variables are
replaced with real data. This makes it possible for the same program to process different sets of
data. (​source​)

Connections

Integration Potential subjects: ​Art, history, language arts, media arts, music, social studies

Example(s): ​This project could include historical, contemporary, or fictional fashion and accessories,
which could integrate with lessons on history, social studies, or language arts. The music player
extension could also connect with music standards if coders compose or perform their own music.
Click here​ to see other examples and share your own ideas on our subforum dedicated to integrating
projects.

Vocations The creative thinking utilized within this project are often used by costume, fashion, or product
designers. Thinking through user experience design is a common practice for software engineers (and
even teachers/facilitators if we change some of the terminology). ​Click here​ to visit a website
dedicated to exploring potential careers through coding.

Resources

● Example project
● Remix project
● Video walkthroughs
● Quick reference guides
● Project files
● This project was inspired by a step-by-step guide designed by Scratch

Project Sequence

Preparation (20+ minutes)

Suggested preparation Resources for learning more

http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=139
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=272
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=140
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=265
http://www.webopedia.com/TERM/V/variable.html
https://bootuppd.org/forums/forum/classroom-integration/
https://careerswithstem.com.au/
https://scratch.mit.edu/projects/178744003/#player
https://scratch.mit.edu/projects/178927310/
https://www.youtube.com/playlist?list=PLV4zluvZAlMobxxcUgo23kR-Y_lA7Hd0G
https://drive.google.com/open?id=0B342uiaCLSS3ZmhYYzluUG5jMDA
https://drive.google.com/open?id=0B342uiaCLSS3MGgxMGY5a1ZUcWs
https://scratch.mit.edu/projects/editor/?tip_bar=fashion

Customizing this project for your class (10+ minutes): ​Remix
example project​ or the the ​remix project​ to include your own
character builder theme.

(10+ minutes) ​Read through each part of this lesson plan and
decide which sections the coders you work with might be
interested in and capable of engaging with in the amount of
time you have with them. If using projects with sound,
individual headphones are very helpful.

Download the offline version of Scratch: ​Although hopefully
infrequent, your class might not be able to access Scratch due
to Scratch’s servers going down or your school losing internet
access. Events like these could completely derail your lesson
plans for the day; however, there is an offline version of
Scratch that coders could use when Scratch is inaccessible.
Click here​ to download the offline version of Scratch on to
each computer a coder uses and ​click here​ to learn more by
watching a short video.

● BootUp Scratch Tips
○ Videos and tips on Scratch from our ​YouTube

channel
● BootUp Facilitation Tips

○ Videos and tips on facilitating coding classes
from our ​YouTube channel

● Scratch Starter Cards
○ Printable cards with some sample starter code

designed for beginners
● ScratchEd

○ A Scratch community designed specifically for
educators interested in sharing resources and
discussing Scratch in education

● Scratch Help
○ This includes examples of basic projects and

resources to get started
● Scratch Videos

○ Introductory videos and tips designed by the
makers of Scratch

● Scratch Wiki
○ This wiki includes a variety of explanations

and tutorials

Getting Started (6-15+ minutes)

Suggested sequence Resources, suggestions, and connections

1. Review and demonstration (2+ minutes):
Begin by asking coders to talk with a neighbor for 30 seconds
about something they learned last time; assess for general
understanding of the practices and concepts from the
previous project.

Explain that today we are going to create custom costumes
and code to create a character builder. If coders are not sure
what character builders are, ask if anyone has played games
that allow them to create their own custom character or
avatar (e.g., Sims, Skyrim, and most other RPGs. Display and
demonstrate the ​sample project​ (or your own remixed
version).

Practices reinforced:
● Communicating about computing

Video: ​Project Preview​ (1:33)
Video: ​Lesson pacing​ (1:48)

This can include a full class demonstration or guided
exploration in small groups or individually. For small group and
individual explorations, you can use the videos and quick
reference guides embedded within this lesson, and focus on
facilitating 1-on-1 throughout the process.

Example review discussion questions:

● What’s something new you learned last time you
coded?

○ Is there a new block or word you learned?
● What’s something you want to know more about?
● What’s something you could add or change to your

previous project?
● What’s something that was easy/difficult about your

previous project?

2. Discuss (3+ minutes):
Have coders talk with each other about how they might create
a project like the one demonstrated. If coders are unsure, and
the discussion questions aren’t helping, you can model
thought processes: “I noticed the sprite moved around, so I

Practices reinforced:
● Communicating about computing

Note: ​Discussions might include full class or small groups, or
individual responses to discussion prompts. These discussions
which ask coders to predict how a project might work, or think

https://scratch.mit.edu/projects/178744003/#player
https://scratch.mit.edu/projects/178927310/
https://scratch.mit.edu/download
https://youtu.be/M0MoF-OI48A
https://www.youtube.com/playlist?list=PLV4zluvZAlMrBWUeo1WMmRE7IQpJ_nOJV
https://youtube.com/bootuppd
https://youtube.com/bootuppd
https://www.youtube.com/playlist?list=PLV4zluvZAlMpHQ0MbOkE52QC9f0SYNJVh
https://youtube.com/bootuppd
https://scratch.mit.edu/info/cards/
http://scratched.gse.harvard.edu/
https://scratch.mit.edu/help/
https://scratch.mit.edu/help/videos/
https://wiki.scratch.mit.edu/wiki/Scratch_Wiki:Table_of_Contents
https://scratch.mit.edu/projects/178744003/#player
https://www.youtube.com/watch?v=Mpwv7_nDfUw
https://youtu.be/B2sPAmQxiGc

think they used a motion block. What motion block(s) might
be in the code? What else did you notice?”

After the discussion, coders will begin working on their project
as a class, in small groups, or at their own pace.

through how to create a project, are important aspects of
learning to code. Not only does this process help coders think
logically and creatively, but it does so without giving away the
answer.

Example discussion questions:

● What would we need to know to make something like
this in Scratch?

● What kind of blocks might we use?
● What else could you add or change in a project like

this?
● What code from our previous projects might we use in

a project like this?
● What kind of sprites might we see in character

builder?
○ What kind of code might they have?

● How might users interact with a project like this?

3. Remix the original project (1-10+ minutes):
If not yet comfortable with logging in, review how to log into
Scratch and remix ​this project​.

If coders continue to have difficulty with logging in, you can
create cards with a coder’s login information and store it in
your desk. This will allow coders to access their account
without displaying their login information to others.

Alternative login suggestion: ​Instead of logging in at the start
of class, another approach is to wait until the end of class to
log in so coders can immediately begin working on coding;
however, coders may need a reminder to save before leaving
or they will lose their work.

Why the variable length of time?​ It depends on comfort with
login usernames/passwords and how often coders have signed
into Scratch before. Although this process may take longer
than desired at the beginning, coders will eventually be able to
login within seconds rather than minutes.

What if some coders log in much faster than others? ​Set a
timer for how long everyone has to log in to their account
(e.g., 5 minutes). If anyone logs in faster than the time limit,
they can open up previous projects and add to them. Your role
during this time is to help out those who are having difficulty
logging in. Once the timer goes off, everyone stops their
process and prepares for the following chunk.

Project Work (90+ minutes; 3+ classes)

Suggested sequence Resources, suggestions, and connections

4. Create custom costumes (40+ minutes)
2 minute discussion
Either pick a theme for everyone, have coders select from a
list of themes (see the column on the right), or allow coders to
create their own theme for their projects. Discuss with a
partner different ways we might create custom sprites for our
theme(s).

5+ minute demonstrations
Drag the sprite you would like to add costumes to over Dani.
Then demonstrate how to modify a costume by making a copy
and then altering it with different tools in the image editor.

Standards reinforced:
● 1B-AP-12​ Modify, remix, or incorporate portions of an

existing program into one's own work, to develop
something new or add more advanced features

Practices reinforced:
● Testing and refining computational artifacts
● Creating computational artifacts

Video:​ ​How to remix the Character Builder project​ (1:27)

Video: ​Create custom costumes​ (2:20)
Quick Reference Guide: ​Click here

https://scratch.mit.edu/projects/178927310/
https://youtu.be/Wj5V9E0gcyw
https://youtu.be/-e-McbcXhgI
https://docs.google.com/presentation/d/1R8WVok8wTgwpsm2flPRcPeFffS5v2WYAHw-aTDvNgPs/edit?usp=sharing

Ask for a suggestion of a new costume and create that
suggestion from a blank template. Once completed, and using
Dani in the stage as a guide, move the newly drawn costume
around in the image editor screen (not on the stage) until it is
the correct size and position on Dani on the left.

Also demonstrate how to make sprites draggable in the player
view (see resources on the right).

33+ minutes to create custom costumes and 1-on-1
facilitating
Give coders plenty of time to create their costumes using the
image editor tools. Encourage peer-to-peer assistance and
facilitate 1-on-1 as needed. If coders finish their costumes
early, encourage them to begin adding code to their project.

Video:​ ​Make sprites draggable​ (1:44)
Quick reference guide: ​Click here

Video:​ ​Image editor: Bitmap mode​ (5:15)
Video:​ ​Image editor: Vector mode​ (5:00)

Theme examples:

● Cosplay
● Video games
● Superheros
● Anime
● Period-specific clothing (historical connection)
● Career opportunities in our community
● Future fashion design
● Funniest outfit contest

Facilitation tip:​ It might be easier to modify existing costumes
then to create new costumes from scratch; use the ​remix
project​ to quickly get started. Simply have coders make
duplicates (click the stamp, click the costume), then modify
the duplicate costume to something different.

A note on using the “Coder Resources” with your class:
Young coders may need a demonstration (and semi-frequent
friendly reminders) for how to navigate a browser with
multiple tabs. The reason why is because kids will have at least
three tabs open while working on a project: 1) a tab for
Scratch, 2) a tab for the Coder Resources walkthrough, and 3)
a tab for the video/visual walkthrough for each step in the
Coder Resources document. Demonstrate how to navigate
between these three tabs and point out that coders will close
the video/visual walkthrough once they complete that
particular step of a project and open a new tab for the next
step or extension. ​Although this may seem obvious for many
adults, we recommend doing this demonstration the first
time kids use the Coder Resources and as friendly reminders
when needed​.

(optional) Review or reverse engineering (10+ minutes each):
If you’ve already introduced the following concepts, simply
spend a few minutes asking coders how they might use the
concepts in each of their projects. Otherwise, I suggest the
following process for introducing how to do the following in a
project.

1+ minute intro demonstration
Review one of the following examples:

● Video:​ ​Create custom buttons​ (2:03)
○ Quick reference guide

● Video:​ ​Code your buttons​ (2:41)
○ Quick reference guide

● Video: ​Indicate a button is pressed​ (2:55)
○ Quick reference guide

● Video: ​Hold down a button​ (2:50)
○ Quick reference guide

Standards reinforced:
● 1B-AP-10​ Create programs that include sequences,

events, loops, and conditionals
● 1B-AP-11​ Decompose (break down) problems into

smaller, manageable subproblems to facilitate the
program development process

● 1B-AP-15​ Test and debug (identify and fix errors) a
program or algorithm to ensure it runs as intended

Practices reinforced:
● Communicating about computing
● Testing and refining computational artifact
● Creating computational artifacts
● Fostering an inclusive computing culture

Concepts reinforced:
● Algorithms
● Control

https://youtu.be/aV3uROuKZMs
https://docs.google.com/presentation/d/1EWPxuCm5CiOF2ZcGyYHSSroGuxDNzryQlP0SE3o1CX4/edit?usp=sharing
https://youtu.be/hhcczGzfssU
https://youtu.be/0QgM-5jZzjQ
https://scratch.mit.edu/projects/178927310/
https://scratch.mit.edu/projects/178927310/
https://youtu.be/7e1FD0uQOO8
https://docs.google.com/presentation/d/1o7FhW_6HyMvE2ZEphBslxZKHqP-_CpennfXlK19ZIUk/edit?usp=sharing
https://youtu.be/7dhqhuRm-MI
https://docs.google.com/presentation/d/1GNzVEFc49dUXZwhkZEWcCxXxqD1k_IzGuq_6nS1O08Q/edit?usp=sharing
https://youtu.be/5UDpTf4O2w8
https://docs.google.com/presentation/d/1MiMEIhdG7EtDeb-sibdm8kdcEBZjZOrHsVlkK3u1Wwc/edit?usp=sharing
https://youtu.be/Hii-ZZ0aRz8
https://docs.google.com/presentation/d/16t-zB3zgtUFlD2bMs2rzFsXZTTWFXe5peetq9O9k3oM/edit?usp=sharing

● Video:​ ​Reset a sprite’s appearance​ (3:41)
○ Quick reference guide

4+ minute reverse engineering and peer-to-peer coaching
Ask coders to see if they can figure out how to use their code
blocks to create an algorithm that makes a sprite do
something similar to what was demonstrated. Facilitate by
walking around and asking guiding questions.

1+ minute explanation demonstration
If coders figured out how to get their sprite to do something
similar, have them document in their journal, share with a
partner, or have a volunteer show the class their code and
thought processes that led to the code. Otherwise, reveal the
code, walk through each step of the algorithm, and explain
any new blocks.

4+ minute application and exploration
Encourage coders to try something similar, and leave your
code up on display while they work. Facilitate by walking
around and asking questions about how coders might change
their code so it’s not the same as yours.

Video: ​Suggestions for reverse engineering​ (4:25)

Note: ​It is not recommended to show each of these ideas at
once, but to show one idea, give time for application and
exploration, show another idea, give time for application and
exploration, etc. This process could take multiple classes. Also,
some of these examples may be difficult for young coders, so
go slow and encourage copying and modifying code as it’s
good practice.

Alternative suggestion: ​If reverse engineering is too difficult
for the coders you work with, you could display the source
code and have coders predict what will happen.

Suggested guiding questions:

● What kind of blocks do you think you might need to
do something like that?

● Do you see a pattern where we might use a repeat?
○ If so, what kind of repeat?

● When combining ideas, what happens if you use
multiple events blocks in the same sprite? ​(Note: this
concept is Referred to as parallel computing)

○ What are the benefits/drawbacks of using
multiple events blocks?

Potential discussion:​ There is not always one way to recreate
something with code, so coders may come up with alternative
solutions to your own code. When this occurs, it can open up
an interesting discussion or journal reflection on the
affordances and constraints of such code.

Suggested application and exploration questions:

● What other code blocks could you use?
● What other sprites might use similar code?
● What other code could we add to this project?

5. Create a character builder (40+ minutes):
40+ minute coding time and 1-on-1 facilitating
Give coders time to add user interaction to the remix project
and continue to create new costumes (as long as they also
continue to add code). Encourage peer-to-peer assistance and
facilitate 1-on-1 as needed.

Standards reinforced:
● 1B-AP-10​ Create programs that include sequences,

events, loops, and conditionals
Practices reinforced:

● Testing and refining computational artifacts
● Creating computational artifacts

Concepts reinforced:
● Algorithms
● Control

Facilitation Suggestion: ​Some coders may not thrive in inquiry
based approaches to learning, so we can encourage them to
use the ​Tutorials​ to get more ideas for their projects;
however, we may need to remind coders the suggestions
provided by Scratch are not specific to our projects, so it may
create some unwanted results unless the code is modified to
match our own intentions.

https://youtu.be/wAuWOSrO5KY
https://docs.google.com/presentation/d/1dDOdJG1Q9oIFPsu0jHJUxtjL-c6Z-OZz-vfKMWaA5k0/edit?usp=sharing
https://youtu.be/--CZwUaK4So
https://drive.google.com/open?id=0B342uiaCLSS3QnZyLVFXTzNFTzg

6. Add in comments (​the amount of time depends on typing
speed and amount of code​)​:
1 minute demonstration
When the project is nearing completion, bring up some code
for the project and ask coders to explain to a neighbor how
the code is going to work. Review how we can use comments
in our program to add in explanations for code, so others can
understand how our programs work.

Quickly review how to add in comments.

Commenting time
Ask coders to add in comments explaining the code
throughout their project. Encourage coders to write clear and
concise comments, and ask for clarification or elaboration
when needed.

Standards reinforced:
● 1B-AP-17​ Describe choices made during program

development using code comments, presentations,
and demonstrations

Practices reinforced:
● Communicating about computing

Concepts reinforced:
● Algorithms

Video:​ ​Add in comments​ (1:45)
Quick reference guide: ​Click here

Facilitation suggestion: ​One way to check for clarity of
comments is to have a coder read out loud their comment and
ask another coder to recreate their comment using code
blocks. This may be a fun challenge for those who type fast
while others are completing their comments.

Assessment

Standards reinforced:
● 1B-AP-17​ Describe choices made during program development using code comments, presentations, and

demonstrations
Practices reinforced:

● Communicating about computing

Although opportunities for assessment in three different forms are embedded throughout each lesson, ​this page​ provides
resources for assessing both processes and products. If you would like some example questions for assessing this project, see
below:

Summative
Assessment ​of ​Learning

Formative
Assessment ​for ​Learning

Ipsative
Assessment ​as ​Learning

The debugging exercises, commenting
on code, and projects themselves can all
be forms of summative assessment if a
criteria is developed for each project or
there are “correct” ways of solving,
describing, or creating.

For example, ask the following after a
project:

● Can coders debug the
debugging exercises​?

● Did coders create a project
similar to the project preview?

○ Note: ​The project
preview and sample
projects are not
representative of what
all grade levels should
seek to emulate. They
are meant to generate
ideas, but expectations
should be scaled to

The 1-on-1 facilitating during each
project is a form of formative
assessment because the primary role of
the facilitator is to ask questions to
guide understanding; storyboarding can
be another form of formative
assessment.

For example, ask the following while
coders are working on a project:

● What are three different ways
you could change that sprite’s
algorithm?

● What happens if we change the
order of these blocks?

● What could you add or change
to this code and what do you
think would happen?

● How might you use code like
this in everyday life?

● See the suggested questions
throughout the lesson and the

The reflection and sharing section at the
end of each lesson can be a form of
ipsative assessment when coders are
encouraged to reflect on both current
and prior understandings of concepts
and practices.

For example, ask the following after a
project:

● How is this project similar or
different from previous
projects?

● What new code or tools were
you able to add to this project
that you haven’t used before?

● How can you use what you
learned today in future
projects?

● What questions do you have
about coding that you could
explore next time?

● See the ​reflection questions​ at

https://youtu.be/Fr7jvGfasFM
https://docs.google.com/presentation/d/1dvfo4ChhUWws6GklP8AkoWOwhsMpPqupRFf94XiS0h4/edit?usp=sharing
https://drive.google.com/open?id=1C5X0AETVTCmx4YTaHHrVGYB2hNCDUmJEBJokTiiudEk

match the experience
levels of the coders you
are working with.

● Did coders use a variety of block
types in their algorithms and
can they explain how they work
together for specific purposes?

● Did coders include descriptive
comments for each event in all
of their sprites?

● Can coders explain their design
decisions for user interaction?

● Can coders explain how to
create or modify costumes using
the image editor tools?

● Did coders create a character
builder with at least ## new
custom costumes and at least
different ways for users to
interact with their project?

○ Choose a number
appropriate for the
coders you work with
and the amount of time
available.

assessment examples ​for more
questions.

the end for more suggestions.

Extended Learning

Project Extensions

Suggested extensions Resources, suggestions, and connections

Use the example project as a guide (as needed)
At some point, coders might get stuck or run out
of ideas. Rather than explaining to them how to
do something, ask them to open the ​example
project​, read the comments inside the various
sprites and background, and then look at the code
to see if they can figure out how to solve their
problem. Although this is a very open-ended
approach, this models a common coding practice
that helps coders become independent learners.

Standards reinforced:
● 1B-AP-10​ Create programs that include sequences, events, loops,

and conditionals
● 1B-AP-12​ Modify, remix, or incorporate portions of an existing

program into one's own work, to develop something new or add
more advanced features

Practices reinforced:
● Testing and refining computational artifacts
● Creating computational artifacts

Concepts reinforced:
● Algorithms
● Control

Resource: ​Example project

Facilitation Suggestion: ​Some coders may not thrive in inquiry based
approaches to learning, so we can encourage them to use the ​Tutorials​ to
get more ideas for their projects; however, we may need to remind coders
the suggestions provided by Scratch are not specific to our projects, so it
may create some unwanted results unless the code is modified to match
our own intentions.

https://drive.google.com/open?id=1C5X0AETVTCmx4YTaHHrVGYB2hNCDUmJEBJokTiiudEk#heading=h.h5oq13i5ouia
https://scratch.mit.edu/projects/178744003/
https://scratch.mit.edu/projects/178744003/
https://scratch.mit.edu/projects/178744003/
https://drive.google.com/open?id=0B342uiaCLSS3QnZyLVFXTzNFTzg

Note: ​The example project has a lot of messages that all do different
things. It makes it look like the project is complicated; however, each
message/function is relatively easy to understand and has comments that
explains what it does.

Match sounds to a costume (15+ minutes)
5 demonstration
Sometimes it makes sense to have many different
kinds of costumes in one sprite (e.g., the Props
sprite); however, what happens if we want that
sprite to play a different sound depending on the
costume it’s on? Demonstrate how the Props
sprite will play different sounds that match the
different costumes, then ask the class how we
might do this. This is pretty tricky as it introduces
a block we haven’t used yet, so I wouldn’t expect
them to know the answer.

Demonstrate how to match sounds to a costume
number using the ​looks costume # block​ inside of
a ​play/start sound block​.

10+ minutes to code their projects and 1-on-1
facilitating
Give coders time to match sounds to costumes
and trigger them with code. Encourage
peer-to-peer assistance and facilitate 1-on-1 as
needed.

Standards reinforced:
● 1B-AP-10​ Create programs that include sequences, events, loops,

and conditionals
Practices reinforced:

● Testing and refining computational artifacts
● Creating computational artifacts

Concepts reinforced:
● Algorithms
● Control

Video:​ ​Match sounds to a costume​ (3:17)
Quick reference guide: ​Click here

Create music player controls (Advanced) (5+
minutes per function)
2 minute demonstration for each function
To create a music player, we need to create a
variable to keep track of what song we are on.
Demonstrate how to create a variable in the
backdrops section, and then how to use the
message blocks to create functions for play, next
song, previous song, and stop (demonstrate one
at a time).

3+ minutes coding time for each function, then
time at the end for tinkering and 1-on-1
facilitating
Give coders time to code each function of their
music players. Encourage peer-to-peer assistance
and facilitate 1-on-1 as needed.

Standards reinforced:
● 1B-AP-09 ​Create programs that use variables to store and modify

data
● 1B-AP-10​ Create programs that include sequences, events, loops,

and conditionals
Practices reinforced:

● Testing and refining computational artifacts
● Creating computational artifacts

Concepts reinforced:​ ​Algorithms, Control, ​and ​Variables

Video:​ ​Create music player controls (Advanced)​ (6:01)
Quick reference guide: ​Click here

Note: ​Keeping music players in the backdrops area makes the music files
and code easier to find than having to search for the code in every single
sprite. A quick way to remember where to store it is to put the background
music’s code in the background (backdrop).

Why is this labeled advanced if the code is to simple? ​The code itself is
very simple to create; however, we haven’t talked about how to use
variables yet. We will introduce variables in later projects.

Add even more (30+ minutes, or at least one
class)​:
If time permits and coders are interested in this
project, encourage coders to explore what else

Standards reinforced:
● 1B-AP-10​ Create programs that include sequences, events, loops,

and conditionals
Practices reinforced:

https://drive.google.com/open?id=0B342uiaCLSS3Y3lsTkRsR3Y0ajQ
https://drive.google.com/open?id=0B342uiaCLSS3aUlpb0xTRjJnd2M
https://youtu.be/qCpZ0MVjxtY
https://docs.google.com/presentation/d/1-GFSQA0amvNc8YzseEUwoGrj1caKjLCYQni7DBpTclI/edit?usp=sharing
https://youtu.be/fuRcetfgmv8
https://docs.google.com/presentation/d/1fn8J1n61lnV5sImY7ZmZWy_IdITWjJaqyUmd3awDE2I/edit?usp=sharing

they can create in Scratch by trying out new
blocks and reviewing previous projects to get
ideas for this project. When changes are made,
encourage them to alter their comments to
reflect the changes (either in the moment or at
the end of class).

While facilitating this process, monitor to make
sure coders don’t stick with one feature for too
long. In particular, coders like to edit their
sprites/backgrounds by painting on them or
taking photos, or listen to the built-in sounds in
Scratch. It may help to set a timer for creation
processes outside of using blocks so coders focus
their efforts on coding.

● Testing and refining computational artifacts
● Creating computational artifacts

Concepts reinforced:
● Algorithms
● Control

Facilitation Suggestion: ​Some coders may not thrive in inquiry based
approaches to learning, so we can encourage them to use the ​Tutorials​ to
get more ideas for their projects; however, we may need to remind coders
the suggestions provided by Scratch are not specific to our projects, so it
may create some unwanted results unless the code is modified to match
our own intentions.

Suggested questions:

● What else can you do with Scratch?
● What do you think the other blocks do?

a. Can you make your project do ____?
● What other sprites can you add to your project?
● What have you learned in other projects that you could use in this

project?
● Can you add more user control than demonstrated?
● How else might you use messages in your project?

Similar projects:
Have coders explore the code of other peers in
their class, or on a project studio dedicated to this
project. Encourage coders to ask questions about
each other’s code. When changes are made,
encourage coders to alter their comments to
reflect the changes (either in the moment or at
the end of class).

Watch ​this video​ (3:20) if you are unsure how to
use a project studio.

Standards reinforced:
● 1B-AP-10​ Create programs that include sequences, events, loops,

and conditionals
● 1B-AP-12​ Modify, remix, or incorporate portions of an existing

program into one's own work, to develop something new or add
more advanced features

Practices reinforced:
● Testing and refining computational artifacts

Concepts reinforced:
● Algorithms

Note: ​Coders may need a gentle reminder we are looking at other projects
to get ideas for our own project, ​not to simply play around​. For example,
“look for five minutes,” “look at no more than five other projects,” “find
three projects that each do one thing you would like to add to your
project,” or “find X number of projects that are similar to the project we
are creating.”

Generic questions:

● What are some ways you can expand this project beyond what it
can already do?

● How is this project similar (or different) to something you worked
on today?

● What blocks did they use that you didn’t use?
a. What do you think those blocks do?

● What’s something you like about their project that you could add
to your project?

● What kind of buttons could we add to this project?
● How could we use messages in this project?
● How might a user interact with this project in ways that we

currently cannot?

https://drive.google.com/open?id=0B342uiaCLSS3QnZyLVFXTzNFTzg
https://youtu.be/hudasCRlwLI

micro:bit extensions:
Note: ​the micro:bit requires installation of Scratch
Link and a HEX file before it will work with a
computer. Watch ​this video​ (2:22) and ​use this
guide​ to learn how to get started with a micro:bit
before encouraging coders to use the ​micro:bit
blocks​.

Much like the generic ​Scratch Tips folder​ linked in
each Coder Resources document, the ​micro:bit
Tips folder​ contains video and visual walkthroughs
for project extensions applicable to a wide range
of projects. Although not required, the ​micro:bit
Tips folder​ uses numbers to indicate a suggested
order for learning about using a micro:bit in
Scratch; however, coders who are comfortable
with experimentation can skip around to topics
relevant to their project.

Standards reinforced:
● 1B-AP-09 ​Create programs that use variables to store and modify

data
● 1B-AP-10​ Create programs that include sequences, events, loops,

and conditionals
● 1B-AP-11​ Decompose (break down) problems into smaller,

manageable subproblems to facilitate the program development
process

● 1B-AP-15​ Test and debug (identify and fix errors) a program or
algorithm to ensure it runs as intended

Practices reinforced:
● Recognizing and defining computational problems
● Creating computational artifacts
● Developing and using abstractions
● Fostering an inclusive computing culture
● Testing and refining computational artifacts

Concepts reinforced:
● Algorithms
● Control
● Modularity
● Program Development
● Variables

Folder with all micro:bit quick reference guides:​ ​Click here
Additional Resources:

● Printable micro:bit cards
○ Cards made by micro:bit
○ Cards made by Scratch

● Micro:bit’s Scratch account with example projects

Generic questions:

● How can you use a micro:bit to add news forms of user
interaction?

● What do the different ​micro:bit event blocks​ do and how could you
use them in a project?

● How could you use the LED display for your project?
● What do the ​tilt blocks​ do and how could you use them in your

project?
● How could you use the buttons to add user/player controls?
● How might you use a micro:bit to make your project more

accessible?

Differentiation

Less experienced coders More experienced coders

Demonstrate the example ​remix project​ or your own version,
and walk through how to experiment changing various
parameters or blocks to see what they do. Give some time for
them to change the blocks around. When it appears a coder
might need some guidance or has completed an idea,
encourage them to add more to the project or begin following
the steps for creating the project on their own (or with
BootUp resources). Continue to facilitate one-on-one using

Demonstrate the project without showing the code used to
create the project. Challenge coders to figure out how to
recreate a similar project without looking at the code of the
original project. If coders get stuck reverse engineering, use
guiding questions to encourage them to uncover various
pieces of the project. Alternatively, if you are unable to work
with someone one-on-one at a time of need, they can access

https://youtu.be/LO6m6bBmxW8
https://drive.google.com/open?id=1UPZ9xby2jS-V9X-w8n6CQzw3_g4fn_XZueppOdZPbB4
https://drive.google.com/open?id=1UPZ9xby2jS-V9X-w8n6CQzw3_g4fn_XZueppOdZPbB4
https://drive.google.com/open?id=1iT_Hsc2mIwW6NNHP1hpzq6GCHEwRFGjj
https://drive.google.com/open?id=1iT_Hsc2mIwW6NNHP1hpzq6GCHEwRFGjj
https://drive.google.com/open?id=0B342uiaCLSS3X0JZNHVSOEJVR1E
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://microbit.org/scratch/
http://bit.ly/scratchmicrobitcards
https://scratch.mit.edu/users/microbit_edu/
https://drive.google.com/open?id=1iT_Hsc2mIwW6NNHP1hpzq6GCHEwRFGjj
https://drive.google.com/open?id=1iT_Hsc2mIwW6NNHP1hpzq6GCHEwRFGjj
https://scratch.mit.edu/projects/178927310/

questioning techniques to encourage tinkering and trying new
combinations of code.

If you are working with other coders and want to get less
experienced coders started with remixing, have those who are
interested in remixing a project ​watch this video​ (2:42) to
learn how to remix a project.

the quick reference guides and video walkthroughs above to
learn how each part of this project works.

If you are working with other coders and want to get more
experienced coders started with reverse engineering, have
those who are interested ​watch this video​ (2:30) to learn how
to reverse engineer a project.

Debugging Exercises (1-5+ minutes each)

Debugging exercises Resources and suggestions

Why doesn't the bowtie spin when clicked?
● The second “turn” block makes it return

back to where it started, and when the
algorithm runs very fast, it makes it appear
like it’s not moving. Change it so there’s
only one “turn” block.

Why does the "next song" button work, but the
"previous song" button keeps repeating the same
song?

● Our “Song number” variable needs to
change by -1, not set to -1

Why doesn't the shirt move to Dani when the
random button is clicked?

● We need to change the parameters of the
“glide” block to the numbers that
correspond with Dani’s location.

micro:bit required​ ​Why can I reset and
randomize the costumes with the micro:bit
buttons, but only Dani is randomized when I shake
the micro:bit?

● We need to add the “broadcast random”
message block in order to trigger the
“when I receive random” in each of the
costume sprites

Even more debugging exercises

Standards reinforced:
● 1B-AP-15​ Test and debug (identify and fix errors) a program or

algorithm to ensure it runs as intended
Practices reinforced:

● Testing and refining computational artifacts
Concepts reinforced:

● Algorithms
● Control

Suggested guiding questions:

● What should have happened but didn’t?
● Which sprite(s) do you think the problem is located in?
● What code is working and what code has the bug?
● Can you walk me through the algorithm (steps) and point out

where it’s not working?
● Are there any blocks missing or out of place?
● How would you code this if you were coding this algorithm from

Scratch?
● Another approach would be to read the question out loud and

give hints as to what types of blocks (e.g., ​motion​, ​looks​, ​event​,
etc.) might be missing.

Reflective questions when solved:

● What was wrong with this code and how did you fix it?
● Is there another way to fix this bug using different code or tools?
● If this is not the first time they’ve coded: ​How was this exercise

similar or different from other times you’ve debugged code in
your own projects or in other exercises?

Unplugged Lessons and Resources

Although each project lesson includes suggestions for the amount of class time to spend on a project, BootUp encourages
coding facilitators to supplement our project lessons with resources created by others. In particular, reinforcing a variety of
standards, practices, and concepts through the use of unplugged lessons. Unplugged lessons are coding lessons that teach
core computational concepts without computers or tablets. You could start a lesson with a short, unplugged lesson relevant to
a project, or use unplugged lessons when coders appear to be struggling with a concept or practice.

List of 100+ unplugged lessons and resources

https://youtu.be/_NY8SOengc0
https://youtu.be/jjrFkZo0T20
https://scratch.mit.edu/projects/178914990/#player
https://drive.google.com/open?id=0B342uiaCLSS3ZVZ0VU5XbWI3Z2s
https://drive.google.com/open?id=0B342uiaCLSS3ZVZ0VU5XbWI3Z2s
https://drive.google.com/open?id=0B342uiaCLSS3ZVZ0VU5XbWI3Z2s
https://drive.google.com/open?id=0B342uiaCLSS3ZVZ0VU5XbWI3Z2s
https://drive.google.com/open?id=0B342uiaCLSS3ZVZ0VU5XbWI3Z2s
https://scratch.mit.edu/projects/178914998/
https://scratch.mit.edu/projects/178914998/
https://scratch.mit.edu/projects/178914998/
https://drive.google.com/open?id=0B342uiaCLSS3SHI3ZG1PT3Zfa1U
https://drive.google.com/open?id=0B342uiaCLSS3SHI3ZG1PT3Zfa1U
https://scratch.mit.edu/projects/178915005/#player
https://scratch.mit.edu/projects/178915005/#player
https://drive.google.com/open?id=0B342uiaCLSS3Q1hiSHdDXzV5eEE
https://drive.google.com/open?id=0B342uiaCLSS3Q1hiSHdDXzV5eEE
https://drive.google.com/open?id=0B342uiaCLSS3Q1hiSHdDXzV5eEE
https://scratch.mit.edu/projects/309293322/
https://scratch.mit.edu/projects/309293322/
https://scratch.mit.edu/projects/309293322/
https://scratch.mit.edu/projects/309293322/
https://drive.google.com/open?id=1juUgeZPQhnE6uk5KU4rDryrSoJakxtXU
https://drive.google.com/open?id=1juUgeZPQhnE6uk5KU4rDryrSoJakxtXU
https://drive.google.com/open?id=1juUgeZPQhnE6uk5KU4rDryrSoJakxtXU
https://drive.google.com/open?id=1juUgeZPQhnE6uk5KU4rDryrSoJakxtXU
https://scratch.mit.edu/studios/4149066/
https://drive.google.com/open?id=0B342uiaCLSS3bW0xOWVMU0FMems
https://drive.google.com/open?id=0B342uiaCLSS3Y3lsTkRsR3Y0ajQ
https://drive.google.com/open?id=0B342uiaCLSS3dDZNeGczOWRtazg
https://docs.google.com/spreadsheets/d/1IRAs7iRxQnUmpH9aJ2q4INx8f3JOWwSzJl8sRnI7lVA/edit?usp=sharing

Incorporating unplugged lessons in the middle of a multi-day project situates understandings within an actual project;
however, unplugged lessons can occur before or after projects with the same concepts. ​An example for incorporating
unplugged lessons:

Lesson 1. Getting started sequence and beginning project work
Lesson 2. Continuing project work
Lesson 3. Debugging exercises and unplugged lesson that reinforces concepts from a project
Lesson 4. Project extensions and sharing

Reflection and Sharing

Reflection suggestions Sharing suggestions

Coders can either discuss some of the following prompts with
a neighbor, in a small group, as a class, or respond in a
physical or digital journal​. ​If reflecting in smaller groups or
individually, walk around and ask questions to encourage
deeper responses and assess for understanding. ​Here is a
sample of a digital journal ​designed for Scratch (​source​) and
here is an example of a printable journal​ useful for younger
coders.

Sample reflection questions or journal prompts:

● How did you use computational thinking when
creating your project?

● What’s something we learned while working on this
project today?

○ What are you proud of in your project?
○ How did you work through a bug or difficult

challenge today?
● What other projects could we do using the same

concepts/blocks we used today?
● What’s something you had to debug today, and what

strategy did you use to debug the error?
● What mistakes did you make and how did you learn

from those mistakes?
● How did you help other coders with their projects?

○ What did you learn from other coders today?
● What questions do you have about coding?

○ What was challenging today?
● Why are comments helpful in our projects?
● H​o​w​ ​i​s​ ​t​h​i​s​ ​p​r​o​j​e​c​t​ ​s​i​m​i​l​a​r​ ​t​o​ ​other projects you’ve

worked on?
○ H​o​w​ ​i​s​ ​i​t​ ​d​i​f​f​e​r​e​n​t​?

● When should you use buttons and when should you
use keyboard commands?

○ What about using both?
○ How might either approach make it easier or

harder for people to use your project?
● How might you customize costumes and backdrops in

previous or future projects?
● How are the image editor tools similar or different

from other programs you’ve used?
● More sample prompts

Standards reinforced:
● 1B-AP-17​ Describe choices made during program

development using code comments, presentations,
and demonstrations

Practices reinforced:
● Communicating about computing
● Fostering an inclusive culture

Concepts reinforced:
● Algorithms
● Control
● Modularity
● Program development

Peer sharing and learning video: ​Click here​ (1:33)
At the end of class, coders can share with each other
something they learned today. Encourage coders to ask
questions about each other’s code or share their journals with
each other. When sharing code, encourage coders to discuss
something they like about their code as well as a suggestion
for something else they might add.

Publicly sharing Scratch projects​: If coders would like to
publicly share their Scratch projects, they can follow these
steps:

1. Video: ​Share your project​ (2:22)
a. Quick reference guide

2. Video (Advanced): ​Create a thumbnail​ (4:17)
a. Quick reference guide

https://docs.google.com/presentation/d/1ZqFg_GjL9sIpK2NpDyFzuAX0dB6iAM3J4iOgV3guym4/edit?usp=sharing
https://docs.google.com/presentation/d/1ZqFg_GjL9sIpK2NpDyFzuAX0dB6iAM3J4iOgV3guym4/edit?usp=sharing
http://scratched.gse.harvard.edu/ct/assessing.html
https://drive.google.com/file/d/0B4AcYgnkzzHOd0ExdWJUYWZIbm8/view
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
https://youtu.be/WC4qykY3OPI
https://youtu.be/hgaLsGbe2gA
https://docs.google.com/presentation/d/1nmV0T4i6DwsW3QWYSxOzhOTkskPVHW1Kb-RuTqMJoPg/edit?usp=sharing
https://youtu.be/ZSmeRyaWITc
https://docs.google.com/presentation/d/1Kl3a_Y_ahtOVNn-Wm4CgGC2L3ep6cdaM49KzC262tag/edit?usp=sharing

