IA-1 SITE PREPARATION

1. SCOPE

Site preparation work shall consist of clearing, grubbing, stripping, refuse removal, bank sloping and structure removal on the site as necessary to rid the site of all undesirable materials on or near the surface and prepare the site for the structure. All woody growth within the construction area shall be cleared and all stumps and roots one inch in diameter or larger shall be grubbed from the site. In addition, all areas within 25 feet of the footprint of the structure shall be cleared and grubbed except as directed by NRCS. The work shall also consist of the removal and disposal of structures (including fences) that must be removed to perform other items of work.

For wetland restoration, enhancement, or creation projects, the wetland area shall be disturbed as little as possible and existing naturally vegetated spillway areas shall not be disturbed.

2. FOUNDATION PREPARATION

The construction areas shall be stripped a minimum of 6 inches to remove all unsuitable materials such as organic matter, grasses, weeds, sod, debris, and stones larger than 6 inches in diameter.

In an earth embankment foundation area, all channel banks and sharp breaks shall be sloped to no steeper than 1.5 horizontal to 1 vertical.

The foundation area shall be thoroughly scarified before placement of fill material. The surface shall have moisture added or shall be compacted if necessary so that the first layer of fill material can be compacted and bonded to the foundation.

3. STRIPPED MATERIAL DISPOSAL

Suitable soil material shall be stockpiled for use as topsoil. The other stripped materials shall be buried, removed from the site, or disposed of as directed by the owner or NRCS. Whenever possible, material shall not be disposed of in the pool area created by the structure.

Stockpiled materials around a construction site should be placed so as not to hinder subsequent construction operations.

4. DISPOSAL OF REFUSE MATERIALS

Waste materials from clearing and structure removal shall be burned or buried at locations approved by the owner. Buried materials shall be covered with a minimum of 2 feet of earthfill. Whenever possible, material shall not be disposed of in any pool area created by the structure.

All refuse shall be disposed of in a manner which complies with all local and state regulations.

5. SALVAGE

Items to be salvaged shall be as shown on the drawings. Structures and fencing materials that are designated to be salvaged shall be carefully removed and neatly placed in the specified storage areas.

IA-3 STRUCTURE REMOVAL

1. SCOPE

The work shall consist of the removal, salvage and/or disposal of structures (including fences) from the designated areas and as indicated on the drawings.

2. MARKING

Each structure or item to be removed will be marked by means of stakes, flags, painted markers or other suitable methods.

3. REMOVAL

All structures designated for removal shall be removed to the specified extent and depth.

4. SALVAGE

Structures that are designated to be salvaged shall be carefully removed and neatly placed in the specified storage areas. Salvaged structures that are capable of being disassembled shall be dismantled into individual members or sections. Such structures shall be neatly match marked with paint prior to disassembly. All pins, nuts, bolts, washers, plates and other loose parts shall be marked or tagged to indicate their proper location in the structure and shall be fastened to the appropriate structural member or packed in suitable containers. Materials from fences designated to be salvaged shall be placed outside the work area on the property from which they are removed. Wire shall be rolled into uniform rolls of convenient size. Posts and rails shall be neatly piled.

5. DISPOSAL OF REFUSE MATERIALS

Refuse materials resulting from structure removal shall be burned or buried at locations shown on the drawings. Buried materials shall be covered with a minimum of 2 feet of earthfill. Whenever possible, material shall not be disposed of in the pool area created by the structure.

All refuse shall be disposed of in a manner which complies with all local and state regulations.

IA-5 POLLUTION CONTROL

1. SCOPE

The work shall consist of installing measures or performing work to control erosion and minimize the production of sediment and other pollutants to water and air during construction operations.

2. MATERIALS

All materials furnished shall meet the requirements shown on the drawings or in the specifications.

3. EROSION AND SEDIMENT CONTROL MEASURES AND WORKS

The measures and works shall include, but are not limited to, the following:

Staging of Earthwork Activities: The excavation and moving of soil materials shall be scheduled so that areas unprotected from erosion will be minimized. These areas will be unprotected for the shortest time feasible.

Seeding: Structures and disturbed areas shall be seeded as soon as possible after construction is completed.

Temporary seedings may be used as an alternative to other stabilization measures as approved by NRCS.

Mulching: Construction areas that have been disturbed but have no construction activity scheduled for 21 days or more shall have erosion protection measures applied by the 14th day. This erosion protection may be mulching or other approved temporary measures. Construction areas shall not be left open during a winter shutdown period and shall be protected by mulching.

All seeding and mulching shall be completed in accordance with the seeding plan and Iowa Construction Specification IA-6, Seeding and Mulching for Protective Cover.

The following works may be temporary. If they are installed as a temporary measure, they shall be removed and the area restored to its original state when they are no longer needed or when permanent measures are installed.

Diversions: Diversions may be required to divert clean runoff water away from work areas and to collect runoff from work areas for treatment and safe disposition.

Stream Crossings: Culverts or bridges may be required where construction equipment must cross streams.

Sediment Basins: Sediment basins may be required to settle and filter out sediment from eroding areas to protect properties and streams below the construction site.

Sediment Filters: Straw bale filters, geotextile sediment fences, or other equivalent methods may be used to trap sediment from areas of limited runoff. Sediment filters shall be properly anchored to prevent erosion under them.

Waterways: Waterways may be required for the safe removal of runoff from fields, diversions, and other structures or measures.

4. CHEMICAL POLLUTION

The Contractor shall provide watertight tanks or barrels or construct a sump sealed with plastic sheets to be used to dispose of chemical pollutants, such as drained lubricating or transmission oils, greases, soaps, concrete mixer wash water, asphalt, etc., produced as a by-product of the construction work. At the completion of the construction work, sumps shall be removed and the area restored without causing pollution.

Sanitary facilities such as chemical toilets or septic tanks shall not be placed adjacent to live streams, wells, or springs. They shall be located at a distance sufficient to prevent contamination of any water sources. At the completion of construction work, facilities shall be disposed of without causing pollution.

5. AIR POLLUTION

The burning of brush or trash or disposal of other materials shall adhere to local and state regulations.

Fire prevention measures shall be taken to prevent the start or the spreading of wild fires, which result from project work. Fire breaks or guards shall be constructed at locations shown on the drawings.

All public access or haul roads used by the contractor during construction of the project shall be sprinkled or otherwise treated to fully suppress dust. All dust control methods shall insure safe operations at all times. If chemical dust suppressants are used, the material shall be a commercially available product specifically designed for dust suppression and the application shall follow manufacturer's requirements and recommendations. A copy of the product data sheet and manufacturer's recommended application procedures shall be provided to the Engineer five working days before use.

6. MAINTENANCE, REMOVAL, AND RESTORATION

All pollution control measures and works shall be adequately maintained in a functional condition as long as needed during the construction operation. All temporary measures shall be removed and the site restored to as near original conditions as practical.

IA-6 SEEDING AND MULCHING FOR PROTECTIVE COVER

1. SCOPE

The work shall consist of seeding, mulching, and fertilizing all disturbed areas and other areas as indicated on the drawings or otherwise designated.

2. SEEDBED PREPARATION AND APPLICATION

The entire area to be seeded shall be reasonably smooth and all washes and gullies shall be filled to conform to the desired cross-section before actual seedbed preparation is begun. At this stage of the operation, the required fertilizer and lime shall be applied uniformly and incorporated into the top 3 inches of the soil with suitable tillage equipment. The seedbed preparation operation shall be suspended when the soil is too wet or too dry. The seedbed shall be loosened to a depth of at least three inches.

On side slopes steeper than 2-1/2 horizontal to1 vertical, the 3 inch minimum depth of seedbed preparation is not required, but the soil shall be worked enough to insure sufficient loose soil to provide adequate seed cover.

Unless otherwise specified, the seeding operation shall be performed immediately after preparation of the seedbed. The seed shall be drilled or broadcast by equipment that will insure uniform distribution of the seed.

3. MATERIALS

The seeding, fertilizing, and mulching requirements are as specified on Form IA-CPA-4.

Straw from cereal grains or hay will be used as mulching material. It shall be relatively free of weeds.

4. MULCH APPLICATION

The required mulching shall be performed as soon as possible after seeding unless otherwise specified. The mulch shall be applied uniformly over the area. The type and rate shall be as specified. When mulching is required, all areas seeded during any one day shall be mulched within 24 hours. The mulch may be spread by any means that results in a uniform cover.

The mulch shall be anchored. Anchoring of the mulch may be performed by a mulch anchoring tool or regular farm disk weighted and set nearly straight, by installation of mulch netting, or by other methods approved by NRCS.

IA-9 SUBSURFACE DRAIN INVESTIGATION, REMOVAL, AND REPAIR

1. SCOPE

The work shall consist of investigation, location, repair, and/or removal of subsurface drains (tile) near new or existing animal waste storage facilities or in wetland restoration, enhancement, or creation project areas, or other situations where subsurface drains may be present.

2. INVESTIGATION AND LOCATION

An inspection trench at least 10 inches wide shall be dug at the location shown on the drawings or as directed by the engineer or his representative. The trench shall be at least 6 feet deep measured from the original ground line, unless otherwise shown on the plans. The Engineer or his representative shall examine the trench and excavated material to identify tile lines.

Size, material, operating condition and direction of flow of each conduit shall be documented. Location and flow line elevation of each conduit shall be surveyed with horizontal and vertical control based on benchmarks shown on the plans.

The inspection trench shall be documented by surveying the natural ground and trench bottom location and elevations at the beginning, end, and every 50 feet for trenches longer than 50 feet.

Backfilling shall not be started without approval of the Engineer. See Section 5 for backfill specifications.

Trench shields, shoring and bracing, or other methods necessary to safeguard the workers and work, and to prevent damage to the existing improvements shall be furnished, placed, and subsequently removed by the contractor.

3. TILE REPAIR

Unless designated for removal, replace damaged conduit with new conduit having equal or greater capacity using material specified in Section 6 or 7. When replacing short sections of clay or concrete tile with single-wall corrugated polyethylene pipe, use the next larger nominal size.

Make connections with manufactured fittings and tight joints. Where joints have gaps that would allow soil to enter, cover the joint with a permanent type material such as coal tar pitch treated roofing paper, fiber glass sheet or mat, or plastic sheet.

If the investigation trench has been excavated below the existing drain grade, backfill the trench with gravel or well-pulverized soil in layers not over four (4) inches thick and tamp by hand or manually directed power tamper to provide a firm foundation for the conduit at the existing grade. Do not backfill with any soil containing broken tile fragments.

Using selected soil free of hard clods, rocks, or frozen soil, hand tamp the backfill material around the haunch of the pipe in layers not over four (4) inches thick to provide support. Hold the conduit in place mechanically while placing excavated material around and over the conduit to ensure proper alignment and grade is maintained. Complete the backfill operation according to Section 5.

4. TILE REMOVAL

Remove conduits as shown on the plans or directed by the Engineer or his representative, including envelope filter material or other flow enhancing material when present.

Cap or plug the open ends of the disconnected conduit to prevent soil entry when the conduit will continue to function downstream, or otherwise shown on the plans. For a minimum distance of two feet around each sealed conduit end, backfill in layers not over four (4) inches thick and tamp by hand or manually directed power tamper to a density equal to or greater than the surrounding undisturbed soil. Do not backfill with any soil containing broken tile fragments, large stones, frozen material, or large dry clods.

Where tile are located beneath an existing animal waste facility, remove the tile or fill the entire length of tile with concrete or Portland cement grout as shown on the plans. When tile removal is specified, the owner shall contact the Iowa Department of Natural Resources (IDNR) for permission to remove the drainage tile under the structure. The structure shall be emptied of waste or lowered to a point below the tile prior to its removal. The structure must be retested for percolation and the results submitted to IDNR and approval received prior to reusing the structure.

If shown on the plans or directed by the engineer, reroute upstream drain lines so the capacity of the upstream drainage system is maintained. Install conduit in accordance with Iowa Construction Specification IA-46, Tile Drains for Land Drainage.

5. BACKFILL

Compact soil around disturbed tile as specified in Section 3 (Tile Repair) and Section 4 (Tile Removal). Keep the backfill within 5 feet of the conduit free from large stones, frozen material, and large dry clods. Unless otherwise shown on the plans, backfill the remainder of the trench as follows:

For trenches located under or near structures, backfill in 12 inch layers and compact each layer to a density equal to or greater than the surrounding undisturbed soil.

For other locations, backfill the remainder of each trench with the excavated soil material which shall extend above the ground surface and be well rounded over the trench.

6. MATERIALS

Unless otherwise shown on the plans, conduit and fittings used for repair shall conform to the specifications listed in Table 1. Perforated pipe shall have a water inlet area of at least 1 square inch per foot, provided by perforations spaced uniformly along the long axis of the pipe. The perforations shall be circular or slots. Circular perforations shall not exceed 3/16 inch in diameter. Slots shall not be more than 1/8 inch wide.

Table 1. Acceptable pipe for subsurface drain repair

Kind of Pipe [#]	Specification
Corrugated Polyethylene (PE) Pipe and Fittings, 3 to 6 inch	ASTM F 405
Corrugated Polyethylene (PE) Pipe and Fittings, 3 to 24 inch	ASTM F 667
Corrugated Profile Wall (Dual Wall) Polyethylene (PE) pipe, 2 to 60 inch	ASTM F 2648 ^{\$}
Corrugated Profile Wall (Dual Wall) Polyethylene (PE) pipe, 12 to 60 inch	ASTM F 2306 ^{\$}
Polyvinyl Chloride (PVC) Plastic Pipe, Schedules 40, 80 and 120	ASTM D 1785
PVC Pressure-Rated Pipe (SDR Series)	ASTM D 2241
Clay drain tile	ASTM C 4
Concrete drain tile	ASTM C 412

[#] Pipe sizes are nominal and the ranges are inclusive
^{\$} Pipe conforming to AASHTO M 252 (3 to 10 inch), or AASHTO M 294 (12 to 60 inch) is acceptable

IA-21 EXCAVATION

1. SCOPE

The work shall consist of the excavation required by the drawings and specifications and disposal of the excavated materials. The cutoff trench and any other required excavations shall be dug to the lines and grades shown on the drawings or as staked in the field. Structure or trench excavations will conform to all safety requirements of OSHA.

2. USE OF EXCAVATED MATERIALS

Suitable materials from the specified excavations shall be used in the construction of required permanent earth fill. The suitability of materials for specific purposes shall be determined by the NRCS Inspector.

3. DISPOSAL OF WASTE MATERIAL

All surplus or waste material shall be disposed of in areas shown on the drawings or as approved by the NRCS Inspector. The waste material shall be smoothed and sloped to provide drainage.

4. STRUCTURE AND TRENCH EXCAVATION

Structure or trench excavations will conform to all safety requirements of OSHA.

5. BORROW EXCAVATION

When the quantities of suitable materials obtained from specified excavations are insufficient to construct the specified fills, additional materials shall be obtained from the designated borrow areas as shown on the drawings or as approved by NRCS and the landowner. On wetland projects, borrow shall not be taken from the wetland area within 10 feet of the embankment or as shown on the drawings.

Borrow areas shall be excavated and grading completed in a manner to eliminate steep or unstable side slopes or hazardous or unsightly conditions.

6. OVER-EXCAVATION

Excavation beyond the specified lines and grades shall be corrected by filling the resulting voids with compacted earthfill, except that if the earth is to become the subgrade for riprap, sand or gravel bedding or drainfill, the voids shall be filled with material conforming to the specifications for the riprap, bedding or drainfill, as appropriate.

IA-23 EARTHFILL

1. SCOPE

The work shall consist of the construction of earth fills required by the drawings and specifications. The completed work shall conform to the lines, grades, and elevations shown on the drawings or as staked in the field.

2. MATERIALS

All fill materials shall be obtained from required excavations and designated borrow areas. Fill materials shall contain no sod, brush, roots or other bio-degradable materials. Rocks larger than 6 inches in diameter shall be removed prior to compaction of the fill.

3. FOUNDATION PREPARATION

Foundations for earthfill shall be stripped a minimum of 6 inches to remove vegetation and other unsuitable materials. Foundation surfaces shall be scarified to a minimum depth of 2 inches prior to placing fill material.

Foundation and abutment surfaces shall not be sloped steeper than 1.5 horizontal to 1 vertical unless otherwise shown on the drawings.

4. PLACEMENT

Fill shall not be placed until the required excavation and foundation preparation have been completed and the foundation has been inspected and approved by NRCS. Fill shall not be placed upon a frozen surface, nor shall snow, ice, or frozen material be incorporated in the fill.

Adjacent to structures or pipes, fill shall be placed in a manner which will prevent damage. The height of the fill adjacent to structures or pipes shall be increased at approximately the same rate on all sides.

The materials used throughout the earth fill shall be essentially uniform. Selective placement shall be as shown on the drawings or approved by NRCS.

If the surface of any layer becomes too hard and smooth for proper bond with the succeeding layer, it shall be scarified to a minimum depth of 2 inches before the next layer is placed.

The top surfaces of embankments shall be maintained approximately level during construction, except that a cross-slope of approximately 2% shall be maintained to ensure effective drainage.

When moving fill material from the borrow area(s) to the embankment by use of bulldozers only, the following steps shall be followed:

- Immediately after the borrow material is pushed to the embankment, it shall be spread in horizontal lifts placed parallel to the centerline of the embankment.
- Compactive effort will then be applied by operating equipment parallel to the centerline of the fill or embankment.
- Lift thicknesses shall be in strict compliance with Clause 6, below.

5. CONTROL OF MOISTURE CONTENT

The moisture content of the fill material shall be adequate for obtaining the required compaction. Material that is too wet shall be dried to meet this requirement, and material that is too dry shall have water added and mixed until the requirement is met.

The moisture content of the fill material shall be such that a ball formed with the hands does not crack or separate when struck sharply with a pencil and will easily ribbon out between the thumb and finger.

Earth foundations under and adjacent to concrete structures shall be prevented from drying and cracking before concrete and backfill are placed.

The application of water to the fill materials shall be accomplished at the borrow areas insofar as possible.

6. COMPACTION

Earth fill shall be compacted by one of the following methods as specified on the plans. If no method is specified, compaction will be in accordance with Method 1.

- Method 1 Earthfill shall be placed so that the wheels or tracks of the loaded hauling equipment, traveling in a direction parallel to the centerline of fill, pass over the entire surface of each layer being placed.
- Method 2 Two (2) complete passes of a tamping-type roller will be made over each layer. The roller shall be capable of exerting a minimum of one hundred (100) pounds per square inch.
- Method 3 Minimum density shall be 90% of the maximum density as determined by ASTM D 698 and as shown on the plans.

The maximum thickness of a lift of fill before compaction shall be 9 inches, unless otherwise indicated on the drawings.

Fill adjacent to structures, pipe conduits, and anti-seep collars shall be placed in layers not more than 4 inches thick and compacted to a density equivalent to that of the surrounding fill by hand tamping, manually directed power tampers, or plate vibrators. Care should be taken so that compaction around the spillway pipe does not cause uplift of the pipe resulting in a void beneath the pipe. Hand tamping only shall be used to compact the earthfill under the bottom half of circular pipes. Equipment shall not be operated within 2 feet of any structure or pipe.

Compacting of fill adjacent to concrete structures shall not be started until the concrete is 7 days old.

7. ISLANDS MOUNDS, AND LOAFING AREAS ON WETLAND RESTORATION, ENHANCEMENT, OR CREATION PROJECTS

Islands shall be randomly located within the wetland area at locations shown on the drawings or as staked in the field. The orientation of island shorelines shall be random with attention given to prevailing winds to limit wave damage. In general, the side of the island with the longest dimension shall be parallel to the prevailing wind direction. Side slopes of islands shall be as shown on the drawings, but in no case shall be steeper than 6 horizontal to 1 vertical. Island shapes shall be irregular.

Loafing areas shall be constructed in the areas shown on the drawings or as staked in the field and shall be graded to drain runoff water. The elevation of at least one loafing area should be above the maximum water level whenever possible.

Excavated material not suitable for embankments, wetland dikes, or islands can be used to create mounds or blended into surrounding topography to create a natural appearance. Spoil material shall not be spread on existing wetland areas.

Organic soils shall not be used to construct islands, loafing areas, dikes, or embankments.

IA-26 TOPSOILING

1. SCOPE

The work shall consist of salvaging topsoil from borrow areas or required excavations and spreading it on the exposed disturbed areas.

2. QUALITY OF TOPSOIL

Topsoil shall consist of friable surface soil reasonably free of grass, roots, weeds, sticks, stones, or other foreign materials.

3. EXCAVATION

After the site has been cleared and grubbed, the topsoil shall be removed from borrow areas and required excavation areas to the depth as shown on the drawings. Topsoil shall be stockpiled at locations approved by NRCS.

4. SPREADING

Spreading shall not be done when the ground or topsoil is frozen, excessively wet, or otherwise in a condition detrimental to the work. Surfaces designated to be covered shall be lightly scarified just prior to the spreading operation. Where compacted fills are designated to be covered by topsoil, the topsoil shall be placed concurrently with the fill and shall be bonded to the compacted fill with the equipment.

Topsoil shall be placed to the minimum depth shown on the drawings. After the spreading operation is completed, the surface shall be finished to a reasonably smooth surface.

IA-31 CONCRETE

1. SCOPE

The work shall consist of furnishing, forming, placing, finishing, and curing Portland cement concrete including steel reinforcement.

2. MATERIALS

Portland Cement shall conform to ASTM C 150 and shall be Type I or Type II.

Fine Aggregates shall conform to ASTM C 33 and shall be composed of clean, uncoated grains of material.

Coarse Aggregates shall be gravel or crushed stone conforming to ASTM C 33 and shall be clean, hard, durable and free from clay or coating of any character. The maximum size of coarse aggregate shall be 1 1/2 inches or as shown on the drawings.

Water shall be clean and free from injurious amounts of oil, acid, salt, alkali, organic matter, or other deleterious substances.

Air entraining agent shall conform to ASTM C 260.

Fly ash may be used as a partial substitution for Portland cement and shall be in strict compliance with ASTM C 618, Class F or C. The loss by ignition shall not exceed 4.0 percent.

Blast-furnace slag may be used as a partial substitution for Portland cement and shall be in conformance with ASTM C 989 for ground granulated blast-furnace slag (GGBF slag).

Water-reducing admixtures shall conform to ASTM C 494 and may be the following types:

- 1. Type A Water-reducing admixture
- 2. Type D Water-reducing and retarding admixture
- 3. Type F Water-reducing, high range admixture (superplasticizer).
- 4. Type G water-reducing, high range, and retarding admixture (superplasticizer).

Type D or G admixture may be used when the air temperature is over 80 degrees F. at the time of mixing and/or placement.

Calcium Chloride or other antifreeze compounds or accelerators will not be allowed.

Preformed expansion joint filler shall be a commercially available product made of bituminous, sponge rubber or closed cell foam materials with a minimum thickness of 1/2 inch.

Reinforcing steel shall be free from loose rust, oil, grease, paint, or other deleterious matter. Reinforcing steel shall conform to one or more of the following:

- 1. Reinforcing Bars ASTM A 615 or A 996, Grade 40 or greater, deformed.
- 2. Welded Wire Fabric ASTM A 185 or A 497.

Waterstops shall be either metallic or nonmetallic. Metallic waterstops shall be fabricated from sheets of copper or galvanized steel. Nonmetallic waterstops shall be made of natural or synthetic rubber or vinyl chloride polymer or copolymer. Rubber, polymer and copolymer waterstops shall have ribbed or bulb-type anchor flanges and a hollow tubular center bulb, unless otherwise shown on the drawings. All waterstops shall be of the sizes shown on the drawings.

Curing compound shall be a liquid membrane-forming compound suitable for spraying on the concrete surface. The curing compound shall meet the requirements of ASTM C 309 Type 2 (white pigmented).

3. CONCRETE DESIGN MIX

The contractor will be responsible for the determining the design mix proportions in accordance with the requirements included in this paragraph and shall provide a copy of the mix to the NRCS Engineer at least 3 days prior to placing any concrete. The concrete mix shall be of such proportions as to provide a minimum strength of 3500 p.s.i. in 28 days, unless otherwise shown on the drawings. The air content shall be 4 to 8 percent of the volume of the concrete at the time of placement. The slump shall be 2 to 5 inches except when superplasticizer is used. The slump shall be 3 inches or less prior to the addition of superplasticizer admixture and shall not exceed 7 1/2 inches following addition and mixing. The fine aggregate shall be 30-50 percent of the total combined aggregate based on oven dry weights. The contractor shall provide tests to verify that the design mix meets the requirements. In lieu of this, one of the following mix proportions per cubic yard may be used:

Mix Number	Minimum Cement, <u>Pounds</u>	Fly Ash, <u>Pounds</u>	GGBF Slag, <u>Pounds</u>	Maximum ** Water, <u>Gallons</u>
1	564	0	0	33
2	470	45-90	0	31-34
3	517	129	0	31 *
4	366	114	91	31 *
5	259	103	155	31 *

** Total of available aggregate moisture, mixing water added at the plant and mixing water added at the job site (one gallon equals 8.33 pounds).

* Requires water reducing admixture.

4. MIXTURES AND MIXING

Ready-mixed concrete shall be batched, mixed and transported in accordance with ASTM C 94. Concrete shall be uniform and thoroughly mixed when delivered to the forms. No mixing water in excess of the amount shown for the design mix or in an amount that would cause the maximum slump to be exceeded shall be added to the concrete during mixing, hauling or after arrival at the point of delivery. The concrete shall be batched and mixed so that the temperature of the concrete at the time of placing shall be between 50 and 90 degrees F.

5. BATCH TICKET

The contractor shall obtain from the supplier a delivery ticket for each batch of concrete before unloading at the site. The following information shall be included on the ticket: name of concrete supplier, job name or location, date, truck number, amount of concrete, time loaded or time of first mixing cement, aggregate, and mixing water added at the plant, type and amount of cement, type and amount of admixtures, oven dry weights of fine and coarse aggregate, and moisture content(%) or weight of water contained in the aggregates.

The following information shall be added to the batch ticket on site: mixing water added on site, time concrete arrived on site and time concrete was unloaded.

Upon completion of the concrete placement, copies of all batch tickets shall be provided to NRCS.

6. REINFORCING STEEL

Before reinforcement is placed, the surfaces of the bars or mesh shall be cleaned to remove any loose, flaky rust, mill scale, oil, grease, or other foreign substances. After placement, the reinforcement shall be maintained in a clean condition until it is completely embedded in the concrete.

Reinforcing bars shall be cut and bent according to ACI Standard 315.

Tack welding of bars shall not be permitted. Reinforcement shall be accurately placed as shown on the drawings and secured in position in a manner that will prevent its displacement during placement of concrete. Metal chairs, metal hangers, metal spacers or concrete chairs shall be used to support reinforcement. Precast concrete chairs shall be manufactured from concrete equal in quality to the concrete being placed. Precast concrete chairs shall be moist at the time concrete is placed

Splices of reinforcing bars shall be made only at the locations shown on the drawings, unless other wise approved by the NRCS Engineer. All reinforcing splices and placement shall be in accordance with ACI 318 and shown on the drawings.

After placement of the reinforcement, concrete shall not be placed until the reinforcement has been inspected and approved by NRCS.

7. PREPARATION OF FORMS AND SUBGRADE

Prior to placement of concrete, the forms and subgrade shall be free of woodchips, sawdust, debris, water, ice, snow, extraneous oil, mortar, or other harmful substances or coatings. Any oil on the reinforcing steel or other surfaces required to be bonded to the concrete shall be removed. All surfaces shall be firm and damp prior to placing concrete. Placement of concrete on mud, dried earth, uncompacted fill, or frozen subgrade will not be permitted.

The forms and associated false-work shall be substantial and unyielding and shall be constructed so that the finished concrete will conform to the specified dimensions and elevations. Forms will be mortar tight. Forms with torn surfaces, worn edges, dents or other defects will not be used. Forms shall be coated with a nonstaining form release agent before being set into place. Excess form coating material shall not stand in puddles in the forms or come in contact with the steel reinforcement or hardened concrete against which fresh concrete is to be placed.

Form accessories to be partially or wholly embedded in the concrete, such as ties and hangers, shall be of a commercially manufactured type. Non fabricated wire shall not be used. Form ties shall be constructed so that the ends or end fasteners can be removed without causing spalling at the surface of the concrete.

Metal form ties used within the forms on structures with a total volume of concrete exceeding fifteen cubic yards shall be equipped with cones or other devices that permit their removal to a depth of at least one inch without damage to the concrete. The holes resulting from cones and other devices shall be patched in accordance with Section 9.

Form ties except those specifically covered by the preceding paragraph shall be broken off flush with the formed surface. Any surface areas which have been spalled or otherwise damaged shall be repaired in accordance with Section 9.

Steel tying and form construction adjacent to new concrete shall not be started until concrete has cured at least 12 hours.

Concrete joints shall be of the type and at the locations shown on the drawings.

Splices in metal waterstops shall be brazed, welded or overlapped and bolted. Splices in nonmetallic waterstops shall be cemented or joined as recommended by the manufacturer.

8. PLACING CONCRETE

Concrete shall not be placed until the subgrade, forms, and steel reinforcement have been inspected and approved by the NRCS Inspector. Any deficiencies are to be corrected before the concrete is delivered for placement.

Concrete shall be delivered to the site and discharged into the forms within 1 1/2 hours after the introduction of the cement to the aggregates. When a superplasticizer is used, the concrete shall be discharged within the manufacturer's recommended time limit for discharge after addition of the admixture. In hot weather or under conditions contributing to quick setup of the concrete, discharge of the concrete shall be accomplished in 45 minutes unless a set-retarding admixture is used, in which case the manufacturer's recommended time limit will apply.

Addition of water at the job site may be done at the beginning of placement of each load of concrete in order to obtain allowable slump, provided that the maximum water content and water/cement ratio in the design mix is not exceeded. Addition of water will not be permitted after placement of the load has started.

The concrete shall be deposited as closely as possible to its final position in the forms and shall be worked into corners and around reinforcement and other embedded items in a manner which prevents segregation. Formed concrete shall be deposited in layers 24 inches or less in depth and shall be continuously deposited so that no concrete will be deposited on concrete which has hardened sufficiently to cause the formation of "cold joints". Concrete containing superplasticizer shall be placed in lifts not exceeding 5 feet in depth. If the surface layer of concrete sets during placement to the degree that it will not flow and merge with the succeeding layer when tamped or vibrated, the contractor shall discontinue placing concrete and install a construction joint. Construction joints shall be completed as shown on the drawings or by one of the following methods:

- 1. The joint shall be constructed using a 6 inch wide by 1/4 inch steel plate. The surfaces of the construction joint shall be prepared by washing and scrubbing with a wire brush or wire broom to expose coarse aggregate. The steel plate shall be embedded 3" in the concrete.
- 2. The joint surface shall be cleaned to expose coarse aggregate by sandblasting or air-water cutting after the concrete has gained sufficient strength to prevent displacement of the coarse aggregate or cement fines. The surface of the concrete shall not be cut so deep as to undercut the coarse aggregate. The joint shall be washed to remove all loose material after cutting.

The surfaces of all construction joints shall be kept continuously moist for at least 1 hour prior to placement of the new concrete. The new concrete shall be placed directly on the cleaned and washed surface. New concrete shall not be placed until the hardened concrete has cured at least 12 hours.

Concrete shall not be dropped more than 5 feet vertically unless suitable equipment is used to prevent segregation. Concrete containing superplasticizer shall not be dropped more than 12 feet vertically.

Immediately after the concrete is placed in the forms, it shall be consolidated by vibration, spading or hand tamping as necessary to insure smooth surfaces and dense concrete. Care should be taken not to over-vibrate concrete containing superplasticizer. Vibration shall not be supplied directly to the reinforcing steel, the forms or concrete which has hardened to the degree that it does not insure a monolithic bond with the preceding layer, The use of vibrators to transport concrete in the forms or conveying equipment will not be permitted.

9. FORM REMOVAL AND FINISHING

Forms shall be left in place for at least 24 hours after placing concrete. Forms shall be removed in such a way as to prevent damage to the concrete. Supports shall be removed in a manner that will permit concrete to take the stresses due to its own weight uniformly and gradually.

Immediately after removal of the forms, concrete which is honey combed, damaged or otherwise defective shall be repaired or replaced. All cavities or depressions resulting from form tie removal shall be patched with a non-shrink grout, mortar mix or epoxy-type sealer. Non-shrink grout consists of 1 part cement and 2-1/2 parts sand that will pass a No. 16 sieve. Only enough water shall be added to produce a filling which is at the point of becoming rubbery when the material is solidly packed.

All repaired and patched areas shall be cured as required in Section 10.

10. CURING

Concrete shall be cured for a period of not less than 7 consecutive days by one of the following approved methods:

- A. Membrane Curing: Concrete shall be cured with white pigmented curing compound. The compound shall be sprayed on moist concrete as soon as free water has disappeared, but shall not be applied to any surface until patching, repairs and finishing of that surface are completed. Curing compound shall not be applied to surfaces requiring bond to subsequently placed concrete, such as construction joints, shear plates, reinforcing steel, and other embedded items. Surfaces subjected to heavy rainfall or running water within 3 hours after curing compound has been applied or surfaces damaged by subsequent construction operations during the curing period, shall be reapplied in the same manner as the original application.
- B. Moist Curing: Concrete shall be cured by maintaining all surfaces continuously wet for the entire curing period.
- C. Cover: Adequately cover an exposed structure with burlap mats, or other material and continually soak with water.

11. BACKFILLING

Backfilling may begin when the curing period has ended. Backfill against the structure will be placed in no more than 4-inch layers and compacted by hand tamping or with manually directed power tampers or plate vibrators. Layers compacted in this manner shall extend not less than 2 feet from any part of the concrete structure.

12. HOT AND COLD WEATHER CONCRETING

When the atmospheric temperature may be expected to drop below 40° F. at the time concrete is delivered to the work site , during placement, or at any time during curing period, concrete shall be mixed, placed and protected in accordance with ACI Standard 306, "Recommended Practice for Cold Weather Concreting."

When climatic or other conditions are such that the temperature of the concrete may reasonably be expected to exceed 90° F. at the time of delivery to the work site, during placement or during the first 24 hours after placement, concrete shall be mixed, placed and protected in accordance with ACI Standard 305, "Recommended Practice for Hot Weather Concreting."

IA-620 UNDERGROUND OUTLET

1. SCOPE

This work shall consist of installation of underground outlets and any appurtenant water control structures in accordance with an approved plan and design.

2. MATERIALS

Materials for underground outlets shall meet the requirements as shown in the plans and specifications. They shall be field inspected for any deficiencies such as thin spots or cracking prior to installation.

Conduit

The following reference specifications pertain to products currently acceptable for use as underground outlets:

Plastic

Corrugated Polyethylene (PE) Pipe and Fittings (3-6 inch)	ASTM F 405
3 through 24 inch Corrugated Polyethylene (PE) Pipe and Fittings	ASTM F 667
Poly (Vinyl Chloride) (PVC) Corrugated Sewer Pipe With a Smooth	
Interior and Fittings (4-36 inch)	ASTM F 949
Poly (Vinyl Chloride) (PVC) Sewer Pipe and Fittings	ASTM D 2729
Type PSM Poly (Vinyl Chloride) (PVC) Sewer Pipe and Fittings	ASTM D 3034
Poly (Vinyl Chloride) (PVC) Pressure-Rated Pipe (SDR Series)	ASTM D 2241
Polyethylene Plastics Pipe and Fittings Materials	ASTM D 335

Clay

Clay Drain Tile	ASTM C 4
Vitrified Clay Pipe, Extra Strength, Standard Strength and Perforated	
Vitrified Clay Pipe, test methods	

Concrete

Concrete Drain Tile (4-36 inch)	ASTM C 412
Concrete Pipe for Irrigation or Drainage	
Concrete Pipe, Manhole Sections, or Tile (test methods)	ASTM C 497
Concrete Sewer, Storm Drain and Culvert Pipe	ASTM C 14
Reinforced Concrete Culvert, Storm Drain and Sewer Pipe	ASTM C 76
Perforated Concrete Pipe	ASTM C 444
Portland Cement	ASTM C 150

Other

Styrene-Rubber (SR) Plastic Drain Pipe and Fittings	ASTM D 2852
Corrugated Aluminum Pipe for Sewers and Drains	
Corrugated Steel Pipe, Metallic-Coated for Sewers and Drains	

Inlet

The inlet shall be fabricated and installed as shown on the plans. Inlets must be of durable material, structurally sound, and resistant to damage by rodents or other animals. Inlets shall be of rigid material, which does not require supplemental support to remain in a vertical position. Materials, which meet these requirements, include the following:

- 1. Corrugated metal pipe, galvanized or aluminum, 16 gauge minimum,
- 2. Smooth steel pipe, with 3/16 inch minimum wall thickness,
- 3. Smooth plastic pipe, polyvinyl chloride (PVC), with an SDR of 43 or less,
- 4. High-density polyethylene pipe (PE). Round pipe shall have an SDR of 43 or less. Square intakes shall have minimum wall thickness as shown in the following table:

Nominal	Minimum
<u>Size</u>	<u>Thickness</u>
6 inch	0.16 inch
8 inch	0.21 inch
10 inch	0.26 inch
12 inch	0.31 inch

All plastic and polyethylene inlets shall include ultra-violet stabilizer to protect from solar degradation.

Perforations in the inlet shall be smooth and free of burrs. Unless otherwise specified, the above ground portion of the inlet shall have holes evenly spaced around the perimeter of the inlet in accordance with the following table:

Inlet	Minimum Number of 1" Diameter
Size	Holes per Foot of Inlet
4 inch	20
5 inch	24
6 inch	30
8 inch	40
10 inch	50
12 inch	60

If slots or round holes other than 1 inch in diameter are provided, the total cross sectional area of the openings per foot shall be equivalent to that provided by 1 inch diameter round holes meeting the above criteria.

The below ground portion of the inlet may be perforated with holes 5/16 of an inch in diameter or less to provide drainage around the inlet.

Appurtenances (i.e. tees and elbows) for polyvinyl chloride (PVC) inlets shall be schedule 40 or heavier.

Additional subsurface drainage tubing or tile may be used in conjunction with the surface inlet to improve access and farmability around the inlet. These underground extensions (when used) shall have a minimum length of 10 feet.

The inlet shall be offset from the main conduit except as noted below. A minimum of 8 feet of non-perforated conduit shall be installed between the inlet and the main conduit. The minimum diameter of the offset line shall be 3 inches. When conduit capacity is based on orifice flow from the inlet, such inlets shall be fabricated so that an orifice can easily be installed.

Only the top inlet in a terrace system may be placed directly on the main conduit. If the top most inlet in a terrace system is placed directly on the main conduit, the conduit shall be non-perforated from the inlet to the toe of the terrace back slope.

Outlet

A continuous section of non-perforated conduit at least 20 feet long shall be used at the outlet. Twothirds of the outlet pipe shall be buried in the ditch bank, and the cantilever section must extend to the toe of the ditch side slope or the side slope shall be protected from erosion. Acceptable materials for use at the outlet include the following:

- 1. Corrugated metal pipe, galvanized or aluminum, 16 gauge minimum;
- 2. Smooth steel pipe, with 3/16 inch minimum wall thickness;
- 3. Smooth plastic pipe, polyvinyl chloride (PVC), with a SDR of 26 or less or schedule 40 or heavier; or
- 4. Corrugated profile wall (dual wall) polyethylene (PE) pipe meeting or exceeding the requirements of ASTM F 2648 (2" to 60"), ASTM F 2306 (12" to 60"). Pipe conforming to AASHTO M 252 (3" to 10"), or AASHTO M 294 (12" to 60") is acceptable.

All plastic and polyethylene pipe outlets shall include ultra-violet stabilizer. PVC and PE pipe outlets shall not be used where burning vegetation on the outlet ditch bank is likely to create a fire hazard.

Connections with the outlet pipe shall be made watertight.

The outlet shall be equipped with a flap-gate type rodent guard.

3. TRENCH EXCAVATION

Trench excavation shall be sufficient to provide required cover after other construction is completed.

The trench bottom shall be smooth and free of exposed rock. If rock is encountered in the trench bottom, over-excavate the trench and place at least 6 inches of compacted earth or sand bedding in the trench to bring it up to the conduit grade. In stable soils, the bottom of the trench shall be shaped to form a semicircular, trapezoidal, or 90-degree "V" groove in its center. The groove shall be shaped to fit the size of conduit. The 90-degree "V" groove shall not be used on conduits greater than 6 inches in diameter.

Unless otherwise shown on the drawings, trench width at the top of the conduit should be the minimum required to permit installation and provide bedding conditions suitable to support the load on the conduit, but with not less than 3 inches of clearance on each side. Maximum trench width shall be the conduit diameter plus 12 inches measured at the top of the conduit, unless approved bedding is installed.

Plow installation is allowed except under the base width of the terrace or embankment. Trench width shall be at least two (2) inches wider than the conduit on each side to allow sufficient bedding to support the pipe.

4. INSTALLATION

The underground outlet system shall be installed to the line and grade shown in the plans or as staked in the field. Conduit lines shall be installed and properly blinded or bedded prior to placement of any other earthfill over the lines.

Conduit lines shall be joined with standard factory couplers, if applicable, to produce a continuous system. Internal couplers may be used if they do not cause excessive flow restrictions. Conduit ends shall be protected during installation.

All appurtenant structures, including trash and rodent guards, shall be installed promptly and provisions shall be made for protecting them during installation. All conduit ends except the outlet and inlets with screens shall be capped with standard factory end caps or concrete. When corrugated plastic tubing is used, no more than 5% stretch will be allowed.

Orifice plates, when specified, shall have smooth edges and fit tightly.

5. TRENCH BACKFILL

Conduits shall be bedded and backfilled throughout the base width of the basin embankment or terrace ridge. Friable soil material shall be placed in 4 inch layers and hand tamped to a depth of 2 feet above the conduit. The sides of the remaining trench shall be sloped no steeper than 3 horizontal to 1 vertical and backfill placed in 9 inch layers and machine compacted.

Water packing may be used as an alternative to mechanical compaction. If the conduit is nonperforated, it shall be filled with water during the water packing procedure. The initial backfill, before wetting, shall be of sufficient depth to ensure complete coverage of the pipe after consolidation has taken place. Water packing is accomplished by adding water in such quantity as to thoroughly saturate the initial backfill without inundation. The wetted fill shall be allowed to dry until firm before final backfill is begun. Final backfill shall be accomplished by placing friable soil material in 4 inch layers and hand tamping to a depth of 2 feet above the conduit. The sides of the remaining trench shall be sloped no steeper than 3 horizontal to 1 vertical and backfill placed in 9 inch layers and machine compacted.

Conduit which is not under the embankment or terrace ridge shall be backfilled with select bedding material containing no hard objects larger than 1½ inches in diameter to a minimum depth of 6 inches over the conduit. The conduit shall be held in place mechanically while select backfill material is placed around and over the conduit. This is to ensure that the proper conduit grade is maintained. All backfill material shall be placed so that deflection or displacement of the conduit will not occur. The remainder of the trench above the conduit shall be backfilled as rapidly as consistent with the soil conditions. Backfill shall extend above the ground surface and be well rounded over the trench. Large stones, frozen material, and large clods are not allowed in the backfill material.

6. FINISH

Work areas shall be smoothed and left in a workmanlike manner. Vegetation or other protective cover shall be established as specified.