

An Amazing Maze Game
Minimum experience:​ Grades 3+, 1st year using Scratch, 2nd quarter or later

At a Glance

Overview and Purpose

Coders create a player controlled maze game with multiple, custom levels. The purpose of this project is to introduce
conditional statements (​if blocks​) to create player controls, while reinforcing how to use the image editor to design mazes.

Objectives and Standards

Process objective(s): Product objective(s):

Statement:
● I will learn how to create player controls in Scratch.
● I will learn how to create custom backdrops in

Scratch.
Question:

● How can we create player controls in Scratch?
● How can we create custom backdrops in Scratch?

Statement:
● I will create a player controlled maze with custom

levels.
Question:

● How can we create a player controlled maze with
custom levels?

Main standard(s): Reinforced standard(s):

1B-AP-10​ Create programs that include sequences, events,
loops, and conditionals

● Control structures specify the order (sequence) in
which instructions are executed within a program
and can be combined to support the creation of
more complex programs. Events allow portions of a
program to run based on a specific action. For
example, students could write a program to explain
the water cycle and when a specific component is
clicked (event), the program would show information
about that part of the water cycle. Conditionals allow
for the execution of a portion of code in a program
when a certain condition is true. For example,
students could write a math game that asks
multiplication fact questions and then uses a
conditional to check whether or not the answer that
was entered is correct. Loops allow for the repetition
of a sequence of code multiple times. For example, in
a program that produces an animation about a
famous historical character, students could use a
loop to have the character walk across the screen as
they introduce themselves. (​source​)

1B-AP-08​ Compare and refine multiple algorithms for the same
task and determine which is the most appropriate.

● Different algorithms can achieve the same result,
though sometimes one algorithm might be most
appropriate for a specific situation. Students should be
able to look at different ways to solve the same task
and decide which would be the best solution. For
example, students could use a map and plan multiple
algorithms to get from one point to another. They
could look at routes suggested by mapping software
and change the route to something that would be
better, based on which route is shortest or fastest or
would avoid a problem. Students might compare
algorithms that describe how to get ready for school.
Another example might be to write different algorithms
to draw a regular polygon and determine which
algorithm would be the easiest to modify or repurpose
to draw a different polygon. (​source​)

1B-AP-09 ​Create programs that use variables to store and
modify data.

● Variables are used to store and modify data. At this
level, understanding how to use variables is sufficient.
For example, students may use mathematical

https://bootuppd.org/
https://drive.google.com/open?id=0B342uiaCLSS3NGRIdVVvTW95a3c
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards

operations to add to the score of a game or subtract
from the number of lives available in a game. The use
of a variable as a countdown timer is another example.
(​source​)

1B-AP-11​ Decompose (break down) problems into smaller,
manageable subproblems to facilitate the program
development process.

● Decomposition is the act of breaking down tasks into
simpler tasks. For example, students could create an
animation by separating a story into different scenes.
For each scene, they would select a background, place
characters, and program actions. (​source​)

1B-AP-13​ Use an iterative process to plan the development of a
program by including others' perspectives and considering user
preferences.

● Planning is an important part of the iterative process of
program development. Students outline key features,
time and resource constraints, and user expectations.
Students should document the plan as, for example, a
storyboard, flowchart, pseudocode, or story map.
(​source​)

1B-AP-15​ Test and debug (identify and fix errors) a program or
algorithm to ensure it runs as intended.

● As students develop programs they should
continuously test those programs to see that they do
what was expected and fix (debug), any errors.
Students should also be able to successfully debug
simple errors in programs created by others. (​source​)

1B-AP-16​ Take on varying roles, with teacher guidance, when
collaborating with peers during the design, implementation,
and review stages of program development.

● Collaborative computing is the process of performing a
computational task by working in pairs or on teams.
Because it involves asking for the contributions and
feedback of others, effective collaboration can lead to
better outcomes than working independently. Students
should take turns in different roles during program
development, such as note taker, facilitator, program
tester, or “driver” of the computer. (​source​)

1B-AP-17​ Describe choices made during program development
using code comments, presentations, and demonstrations.

● People communicate about their code to help others
understand and use their programs. Another purpose
of communicating one's design choices is to show an
understanding of one's work. These explanations could
manifest themselves as in-line code comments for
collaborators and assessors, or as part of a summative
presentation, such as a code walk-through or coding
journal. (​source​)

Practices and Concepts
Source​: K–12 Computer Science Framework. (2016). Retrieved from ​http://www.k12cs.org​.

Main practice(s): Reinforced practice(s):

http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.k12cs.org/

Practice 5: Creating computational artifacts
● "The process of developing computational artifacts

embraces both creative expression and the
exploration of ideas to create prototypes and solve
computational problems. Students create artifacts
that are personally relevant or beneficial to their
community and beyond. Computational artifacts can
be created by combining and modifying existing
artifacts or by developing new artifacts. Examples of
computational artifacts include programs,
simulations, visualizations, digital animations, robotic
systems, and apps." (​p. 80​)

● P5.2. ​Create a computational artifact for practical
intent, personal expression, or to address a societal
issue. (​p. 80​)

● P5.3.​ Modify an existing artifact to improve or
customize it. (​p. 80​)

Practice 2: Collaborating around computing
● "Collaborative computing is the process of performing a

computational task by working in pairs and on teams.
Because it involves asking for the contributions and
feedback of others, effective collaboration can lead to
better outcomes than working independently.
Collaboration requires individuals to navigate and
incorporate diverse perspectives, conflicting ideas,
disparate skills, and distinct personalities. Students
should use collaborative tools to effectively work
together and to create complex artifacts." (​p. 75​)

● P2.1. ​Cultivate working relationships with individuals
possessing diverse perspectives, skills, and
personalities. (​p. 75​)

Practice 6: Testing and refining computational artifacts
● "Testing and refinement is the deliberate and iterative

process of improving a computational artifact. This
process includes debugging (identifying and fixing
errors) and comparing actual outcomes to intended
outcomes. Students also respond to the changing
needs and expectations of end users and improve the
performance, reliability, usability, and accessibility of
artifacts." (​p. 81​)

● P6.1. ​Systematically test computational artifacts by
considering all scenarios and using test cases." (​p. 81​)

● P6.2. ​Identify and fix errors using a systematic process.
(​p. 81​)

Practice 7: Communicating about computing
● "Communication involves personal expression and

exchanging ideas with others. In computer science,
students communicate with diverse audiences about
the use and effects of computation and the
appropriateness of computational choices. Students
write clear comments, document their work, and
communicate their ideas through multiple forms of
media. Clear communication includes using precise
language and carefully considering possible audiences."
(​p. 82​)

● P7.2.​ Describe, justify, and document computational
processes and solutions using appropriate terminology
consistent with the intended audience and purpose. (​p.
82​)

Main concept(s): Reinforced concept(s):

Control
● "Control structures specify the order in which

instructions are executed within an algorithm or
program. In early grades, students learn about
sequential execution and simple control structures.
As they progress, students expand their
understanding to combinations of structures that
support complex execution." (​p. 91​)

● Grade 5 -​ "Control structures, including loops, event
handlers, and conditionals, are used to specify the

Algorithms
● "Algorithms are designed to be carried out by both

humans and computers. In early grades, students learn
about age-appropriate algorithms from the real world.
As they progress, students learn about the
development, combination, and decomposition of
algorithms, as well as the evaluation of competing
algorithms." (​p. 91​)

http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=85
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=854
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101

flow of execution. Conditionals selectively execute or
skip instructions under different conditions." (​p. 103​)

● Grade 5 -​ "Different algorithms can achieve the same
result. Some algorithms are more appropriate for a
specific context than others." (​p. 103​)

Modularity
● "Modularity involves breaking down tasks into simpler

tasks and combining simple tasks to create something
more complex. In early grades, students learn that
algorithms and programs can be designed by breaking
tasks into smaller parts and recombining existing
solutions. As they progress, students learn about
recognizing patterns to make use of general, reusable
solutions for commonly occurring scenarios and clearly
describing tasks in ways that are widely usable." (​p. 91​)

● Grade 5 -​ "Programs can be broken down into smaller
parts to facilitate their design, implementation, and
review. Programs can also be created by incorporating
smaller portions of programs that have already been
created." (​p. 104​)

Variables
● "Computer programs store and manipulate data using

variables. In early grades, students learn that different
types of data, such as words, numbers, or pictures, can
be used in different ways. As they progress, students
learn about variables and ways to organize large
collections of data into data structures of increasing
complexity." (​p. 91​)

● Grade 5 - ​"Programming languages provide variables,
which are used to store and modify data. The data type
determines the values and operations that can be
performed on that data." (​p. 103​)

Scratch Blocks

Primary blocks Event​, ​Control​, ​Motion​, ​Looks

Supporting blocks Data​, ​Operators​, ​Sound

Vocabulary

Algorithm ● A step-by-step process to complete a task. (​source​)
● A formula or set of steps for solving a particular problem. To be an algorithm, a set of rules

must be unambiguous and have a clear stopping point. (​source​)

Debugging ● The process of finding and correcting errors (bugs) in programs. (​source​)
● To find and remove errors (bugs) from a software program. Bugs occur in programs when a line

of code or an instruction conflicts with other elements of the code. (​source​)

Event (trigger) ● An action or occurrence detected by a program. Events can be user actions, such as clicking a
mouse button or pressing a key, or system occurrences, such as running out of memory. Most
modern applications, particularly those that run in Macintosh and Windows environments, are
said to be event-driven,because they are designed to respond to events. (​source​)

● The computational concept of one thing causing another thing to happen. (​source​)
● Any identifiable occurrence that has significance for system hardware or software.

User-generated events include keystrokes and mouse clicks; system-generated events include

http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=113
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=113
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=114
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=103
https://drive.google.com/open?id=0B342uiaCLSS3dDZNeGczOWRtazg
https://drive.google.com/open?id=0B342uiaCLSS3NGRIdVVvTW95a3c
https://drive.google.com/open?id=0B342uiaCLSS3bW0xOWVMU0FMems
https://drive.google.com/open?id=0B342uiaCLSS3Y3lsTkRsR3Y0ajQ
https://drive.google.com/open?id=0B342uiaCLSS3VzVIcWN2bnBFXzg
https://drive.google.com/open?id=0B342uiaCLSS3UXVLV2hiZkpVZ3M
https://drive.google.com/open?id=0B342uiaCLSS3aUlpb0xTRjJnd2M
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=269
http://www.webopedia.com/TERM/A/algorithm.html
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=271
http://www.webopedia.com/TERM/D/debug.html
http://www.webopedia.com/TERM/E/event.html
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=139

program loading and errors. (​source​)

Loop ● A programming structure that repeats a sequence of instructions as long as a specific condition
is true. (​source​)

● In a loop structure, the program asks a question, and if the answer requires an action, it is
performed and the original question is asked again until the answer is such that the action is no
longer required. For example, a program written to compute a company’s weekly payroll for
each individual employee will begin by computing the wages of one employee and continue
performing that action in a loop until there are no more employee wages to be computed, and
only then will the program move on to its next action. Each pass through the loop is called an
iteration. (​source​)

● The computational concept of running the same sequence multiple times. (​source​)

Modularity ● The characteristic of a software/web application that has been divided (decomposed) into
smaller modules. An application might have several procedures that are called from inside its
main procedure. Existing procedures could be reused by recombining them in a new application
(​source​)

Scripts ● One or more Scratch blocks connected together to form a sequence. Scripts begin with an event
block that responds to input (e.g., mouse click, broadcast). When triggered, additional blocks
connected to the event block are executed one at a time. (​source​)

Variable ● A symbolic name that is used to keep track of a value that can change while a program is
running. Variables are not just used for numbers; they can also hold text, including whole
sentences (strings) or logical values (true or false). A variable has a data type and is associated
with a data storage location; its value is normally changed during the course of program
execution. (​source​)

● Variables play an important role in computer programming because they enable programmers
to write flexible programs. Rather than entering data directly into a program, a programmer can
use variables to represent the data. Then, when the program is executed, the variables are
replaced with real data. This makes it possible for the same program to process different sets of
data. (​source​)

Connections

Integration Math, media arts

Vocations There are a wide range of careers in game development that involve coding. For example, coding
character movement, player controls, particle and game physics, random world or object generators,
sound synthesis, game engines and tools, localization, performance and server optimization, etc. ​Click
here​ to visit a website dedicated to exploring potential careers through coding.

Resources

● Example project
● Video walkthroughs
● Quick reference guides
● Project files

Project Sequence

Preparation (20+ minutes)

http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=272
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=273
http://www.webopedia.com/TERM/L/loop.html
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=140
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=273
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=140
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=265
http://www.webopedia.com/TERM/V/variable.html
https://careerswithcode.com/
https://careerswithcode.com/
https://scratch.mit.edu/projects/179589133/
https://www.youtube.com/playlist?list=PLV4zluvZAlMr5Zh3SthmcMmaYP4riuZMc
https://drive.google.com/open?id=0B342uiaCLSS3dm9VZjVuMDEtRmc
https://drive.google.com/open?id=0B342uiaCLSS3NV9jbTRubEU3NXc

Suggested preparation Resources for learning more

Customizing this project for
your class (10+ minutes):
Remix ​the project example​ to
include your own player
controlled maze game.

(10+ minutes) ​Read through
each part of this lesson plan
and decide which sections
the coders you work with
might be interested in and
capable of engaging with in
the amount of time you have
with them. If using projects
with sound, individual
headphones are very helpful.

● BootUp Scratch Tips
○ Videos and tips on Scratch from our Google+ community

● BootUp Facilitation Tips
○ Videos and tips on facilitating coding classes from our Google+ community

● Scratch Starter Cards
○ Printable cards with some sample starter code designed for beginners

● ScratchEd
○ A Scratch community designed specifically for educators interested in sharing

resources and discussing Scratch in education
● Scratch Help

○ This includes examples of basic projects and resources to get started
● Scratch Videos

○ Introductory videos and tips designed by the makers of Scratch
● Scratch Wiki

○ This wiki includes a variety of explanations and tutorials

Getting Started (6-15+ minutes)

Suggested sequence Resources, suggestions, and connections

1. Review and demonstration (2+ minutes):
Begin by asking coders to talk with a neighbor for 30 seconds
about something they learned last time; assess for general
understanding of the practices and concepts from the
previous project.

Explain that today we are going to create a player controlled
maze game. Display and demonstrate the ​sample project​ (or
your own remixed version).

Practices reinforced:
● Communicating about computing

Video: ​Project Preview​ (1:11)
Video: ​Lesson pacing​ (1:48)

This can include a full class demonstration or guided
exploration in small groups or individually. For small group and
individual explorations, you can use the videos and quick
reference guides embedded within this lesson, and focus on
facilitating 1-on-1 throughout the process.

Example review discussion questions:

● What’s something new you learned last time you
coded?

○ Is there a new block or word you learned?
● What’s something you want to know more about?
● What’s something you could add or change to your

previous project?
● What’s something that was easy/difficult about your

previous project?

2. Discuss (3+ minutes):
Have coders talk with each other about how they might create
a project like the one demonstrated. If coders are unsure, and
the discussion questions aren’t helping, you can model
thought processes: “I noticed the sprite moved around, so I
think they used a motion block. What motion block(s) might
be in the code? What else did you notice?”

After the discussion, coders will begin working on their project
as a class, in small groups, or at their own pace.

Practices reinforced:
● Communicating about computing

Note: ​Discussions might include full class or small groups, or
individual responses to discussion prompts. These discussions
which ask coders to predict how a project might work, or think
through how to create a project, are important aspects of
learning to code. Not only does this process help coders think
logically and creatively, but it does so without giving away the
answer.

https://scratch.mit.edu/projects/179589133/
https://plus.google.com/communities/111094637256103731198/stream/1c627678-88e4-48e8-b15a-ad69b2e8f5bb
https://plus.google.com/communities/111094637256103731198/stream/36933ccd-7ad3-4a41-98d8-e571f9262c34
https://scratch.mit.edu/info/cards/
http://scratched.gse.harvard.edu/
https://scratch.mit.edu/help/
https://scratch.mit.edu/help/videos/
https://wiki.scratch.mit.edu/wiki/Scratch_Wiki:Table_of_Contents
https://scratch.mit.edu/projects/179589133/
https://youtu.be/Yi7kqBgI4qY
https://youtu.be/B2sPAmQxiGc

Example discussion questions:

● What would we need to know to make something like
this in Scratch?

● What kind of blocks might we use?
● What else could you add or change in a project like

this?
● What code from our previous projects might we use in

a project like this?
● What kind of sprites might we see in a maze?

○ What kind of code might they have?
● How could we use a keyboard to control a character?
● How could we switch to a different level when we

reach a goal?
● What could happen if we touch a wall?

3. Logging in (1-10+ minutes):
If not yet comfortable with logging in, review how to log into
Scratch and create a new project.

If coders continue to have difficulty with logging in, you can
create cards with a coder’s login information and store it in
your desk. This will allow coders to access their account
without displaying their login information to others.

Alternative login suggestion: ​Instead of logging in at the start
of class, another approach is to wait until the end of class to
log in so coders can immediately begin working on coding;
however, coders may needs a reminder to save before leaving
or they will lose their work.

Why the variable length of time?​ It depends on comfort with
login usernames/passwords and how often coders have signed
into Scratch before. Although this process may take longer
than desired at the beginning, coders will eventually be able to
login within seconds rather than minutes.

What if some coders log in much faster than others? ​Set a
timer for how long everyone has to log in to their account
(e.g., 5 minutes). If anyone logs in faster than the time limit,
they can open up previous projects and add to them. Your role
during this time is to help out those who are having difficulty
logging in. Once the timer goes off, everyone stops their
process and prepares for the following chunk.

Project Work (80+ minutes; 3+ classes)

Suggested sequence Resources, suggestions, and connections

4. Creating levels (25+ minutes, or an entire class)
5+ minute demonstration
Click on the stage icon and open the Backdrops tab. Pick a
starting location for our sprite, then demonstrate how to use
various drawing tools to create a maze with one color. Think
out loud how you want to make sure there is enough room for
a sprite to move through the maze without touching a wall.

Draw a “goal” by choosing a new color and drawing with it at
the end of the first level (e.g., a square). Ask coders why all of
our walls are one color and our goal is a different color. They
may realize this makes it easier for users to figure out what
the goal is in their level, and it will make it easier to code by
allowing us to determine if we touch a wall or a goal.

Practices reinforced:
● Testing and refining computational artifacts
● Creating computational artifacts

Video: ​Creating levels​ (3:03)
Quick Reference Guide: ​Click here

Video:​ ​Image editor: Bitmap mode​ (3:38)
Video:​ ​Image editor: Vector mode​ (4:31)
Video:​ ​Image editor: Extra tools​ (4:12)

Facilitation tip: ​If you’re not comfortable figuring out how to
take into account several wall or goal colors, remind coders
for this project they need one color for their walls and one
color for their goal. If it’s not the same across every level, it

https://youtu.be/A6zbAktYG3I
https://docs.google.com/presentation/d/1iywBxBEGL_giw1ErN0t_MyrNccIJnDzshXtsfVwBqO0/edit?usp=sharing
https://youtu.be/z8Mg9wqCjPo
https://youtu.be/1de3AVbcQ-U
https://youtu.be/HZTCYyuLlpc

Quickly demonstrate one more level, but point out you want
to have the sprite start in the same location, so don’t put a
wall over that location.

20+ minutes to create custom levels and 1-on-1 facilitating
Give coders time to create at least three levels using the
image editor tools. Encourage peer-to-peer assistance and
facilitate 1-on-1 as needed. If coders finish their three levels
early, encourage them to add even more, assist others, or
walk around to get ideas by looking at other coders’ levels.

will make coding a little more difficult (but, certainly possible).
In addition, encourage coders to keep the same starting
location for every level for the same reasons as above. We
could have different starting locations for each level, but that
makes it more complicated.

Suggested questions:

● Where will you sprite’s starting location be? (make
sure it’s the same location for each level)

● Where else might you put your goal?
● Will you make the levels get progressively harder?
● What other shapes could you use to change the way

the levels look?

5. Player controls (10+ minutes)
5 demonstration
Choose one of the four options presented in the ​video​ (4:32)
and ​quick reference guide​, then demonstrate how to create
player controls for the sprite that will navigate through the
maze. Although we could make the controls more
complicated, we only need to make it so our sprite can move
up, down, left, and right.

10+ minutes to code their player controls and 1-on-1
facilitating
Leave your code on the screen and give coders time to create
or copy their player controls, then test them out to make sure
they’re working properly. Encourage peer-to-peer assistance
and facilitate 1-on-1 as needed.

Standards reinforced:
● 1B-AP-08​ Compare and refine multiple algorithms for

the same task and determine which is the most
appropriate

● 1B-AP-10​ Create programs that include sequences,
events, loops, and conditionals

Practices reinforced:
● Testing and refining computational artifacts
● Creating computational artifacts

Concepts reinforced:
● Algorithms
● Control

Video:​ ​Player controls​ (4:32)
Quick reference guide: ​Click here

Facilitation tip: ​Although there are four options presented,
the first option would work best for younger coders because it
removes the need to understand XY directions. The third
option with the forever loop is the best method for responsive
player controls, and can be copied by third graders if the code
is left on the screen. The fourth option with the ​or blocks​ can
make things a little complicated for younger coders.

Suggested questions:

● How could you make this maze two players?
○ What would you need to change in the code

to make it two players?
○ What would be similar?

6. Restart function (5+ minutes)
2 demonstration
Explain we want to create a restart function that will allow us
make ​Scratch Cat​ return to the starting position when
touching a wall or the goal. Review how to use ​broadcast and
receive message blocks​ to create a function. Remind the class
we need to drag ​Scratch Cat​ to the starting position before
using our ​go to block​ or the X and Y coordinates will be off.

3+ minutes to code their restart function and 1-on-1
facilitating

Standards reinforced:
● 1B-AP-10​ Create programs that include sequences,

events, loops, and conditionals
Practices reinforced:

● Testing and refining computational artifacts
● Creating computational artifacts

Concepts reinforced:
● Algorithms
● Control
● Modularity

https://youtu.be/ROles2QMz7c
https://docs.google.com/presentation/d/1v1JMAN3GaBUWr2sFZ7-L_sWk4uPbuWyWFcY2tlGY-GQ/edit?usp=sharing
https://youtu.be/ROles2QMz7c
https://docs.google.com/presentation/d/1v1JMAN3GaBUWr2sFZ7-L_sWk4uPbuWyWFcY2tlGY-GQ/edit?usp=sharing
https://drive.google.com/open?id=0B342uiaCLSS3UXVLV2hiZkpVZ3M
https://drive.google.com/open?id=0B342uiaCLSS3RW5Sdk4yMS1ub3c
https://drive.google.com/open?id=0B342uiaCLSS3dDZNeGczOWRtazg
https://drive.google.com/open?id=0B342uiaCLSS3dDZNeGczOWRtazg
https://drive.google.com/open?id=0B342uiaCLSS3RW5Sdk4yMS1ub3c
https://drive.google.com/open?id=0B342uiaCLSS3bW0xOWVMU0FMems

Leave your code on the screen and give coders time to create
or copy their restart function. Encourage peer-to-peer
assistance and facilitate 1-on-1 as needed.

Video:​ ​Restart function​ (1:05)
Quick reference guide: ​Click here

Note: ​If you leave your code on the screen for copying, point
out their numbers for the ​go to block​ might be different than
yours.

7. Don’t touch the walls (10+ minutes)
5 demonstration
Explain we want to be able to check to see if our sprite
touches a wall. If the sprite touches a wall, it will restart to the
starting position. Demonstrate how to do this and make note
of how to use the ​touching color blocks​ (click on the color,
move your mouse to the color you want, click again to save
the new color).

5+ minutes to code their project and 1-on-1 facilitating
Leave your code on the screen and give coders time to add the
code to their project. Encourage peer-to-peer assistance and
facilitate 1-on-1 as needed.

Standards reinforced:
● 1B-AP-10​ Create programs that include sequences,

events, loops, and conditionals
Practices reinforced:

● Testing and refining computational artifacts
● Creating computational artifacts

Concepts reinforced:
● Algorithms
● Control

Video:​ ​Don’t touch the walls​ (1:43)
Quick reference guide: ​Click here

Note: ​If you leave your code on the screen for copying, point
out their ​touching color block​ will be the color of their walls,
not your walls. I know it seems obvious, but this will likely
come up with younger coders.

Potential unplugged lesson: ​You could engage in a discussion
or lesson on conditionals (if statements) by working through
one of the ​unplugged lessons on conditionals​; for example,
Conditionals with Cards​.

8. Goooooaaaaalllllllll (10+ minutes)
5 discussion and demonstration
Give a minute or two to see if coders can figure out how to
use the wall code for our goal.

Explain we want to be able to check to see if our sprite
touches our goal so we can switch to the next level. If the
sprite touches our goal, it will restart to the starting position
and switch to the next backdrop. Demonstrate how to do this
and point out the two ​switch backdrop blocks​ we need to add
(one for switching to the next backdrop when we reach our
goal and one for setting our starting backdrop).

5+ minutes to code their project and 1-on-1 facilitating
Leave your code on the screen and give coders time to add the
code to their project. Encourage peer-to-peer assistance and
facilitate 1-on-1 as needed.

Standards reinforced:
● 1B-AP-10​ Create programs that include sequences,

events, loops, and conditionals
Practices reinforced:

● Communicating about computing
● Testing and refining computational artifacts
● Creating computational artifacts

Concepts reinforced:
● Algorithms
● Control

Video:​ ​Goooooaaaaalllllllll​ (2:11)
Quick reference guide: ​Click here

Note: ​If you leave your code on the screen for copying, point
out their ​touching color block​ will be the color of their goal,
not your goal. I know it seems obvious, but this will likely
come up with younger coders.

Potential unplugged lesson: ​You could engage in a discussion
or lesson on conditionals (if statements) by working through
one of the ​unplugged lessons on conditionals​; for example,
Conditionals with Cards​.

https://youtu.be/UGoilifNVdE
https://docs.google.com/presentation/d/1OA6p345z3ztiosI1Lnju7JAVdloX9DXhnd5_hM0u8ko/edit?usp=sharing
https://drive.google.com/open?id=0B342uiaCLSS3bW0xOWVMU0FMems
https://drive.google.com/open?id=0B342uiaCLSS3dTdzSE8tRjlPQmc
https://youtu.be/RUJ-CIyzXlo
https://docs.google.com/presentation/d/17sai4USNf_aOu7TRS4J5IJmMhCxa3zu4CpimSJMT9yw/edit?usp=sharing
https://drive.google.com/open?id=0B342uiaCLSS3dTdzSE8tRjlPQmc
https://docs.google.com/spreadsheets/d/1IRAs7iRxQnUmpH9aJ2q4INx8f3JOWwSzJl8sRnI7lVA/edit?usp=sharing
https://code.org/curriculum/course2/12/Teacher
https://drive.google.com/open?id=0B342uiaCLSS3Y3lsTkRsR3Y0ajQ
https://youtu.be/I5cQCRTecPM
https://docs.google.com/presentation/d/1LexHI37JiPo4R981AQsWGzB1P1ZRhZ6dSmIPQWWXFLg/edit?usp=sharing
https://drive.google.com/open?id=0B342uiaCLSS3dTdzSE8tRjlPQmc
https://docs.google.com/spreadsheets/d/1IRAs7iRxQnUmpH9aJ2q4INx8f3JOWwSzJl8sRnI7lVA/edit?usp=sharing
https://code.org/curriculum/course2/12/Teacher

Advanced Note​: We can stack multiple ​if/else blocks​ inside
the “else” portion of the block to check several possible
conditions (each “if” block) and execute one default (the final
“else” block). ​Click here​ for an example where the text
changes depending on how close you are to the goal, and ​click
here​ to see the code in context.

9. Play testing (20+ minutes, or an entire class)
5+ minute play testing
Either in pairs or in small groups, give coders a few minutes to
take turns trying out each other’s maze games and discussing
how they used code and the image editor tools to create their
mazes.

5+ minutes to revise their project and 1-on-1 facilitating
Give coders five or so minutes to revise their projects based
on feedback and ideas they gathered from their peers.
Encourage peer-to-peer assistance and facilitate 1-on-1 as
needed.

I recommend repeating this process several more times to
encourage sharing ideas and getting peer feedback

Standards reinforced:
● 1B-AP-10​ Create programs that include sequences,

events, loops, and conditionals
● 1B-AP-13​ Use an iterative process to plan the

development of a program by including others'
perspectives and considering user preferences

● 1B-AP-16​ Take on varying roles, with teacher
guidance, when collaborating with peers during the
design, implementation, and review stages of program
development

Practices reinforced:
● Collaborating around computing
● Communicating about computing
● Testing and refining computational artifacts
● Creating computational artifacts

Concepts reinforced:
● Algorithms
● Control

Facilitation tip: ​It may help to model the kind of feedback one
might give to a game like this. To practice this, display the
maze I created​ for this lesson or one of the mazes I previously
created in ​this studio​. Ask coders what’s something they like
about the project, what they might be curious about, and
what suggestions they might have for improving the
project(s).

Note:​ When testing out specific levels, a quick way to get to
the desired level is to use code to switch to the specific
backdrop when the green flag is clicked.

10. Adding in comments (​the amount of time depends on
typing speed and amount of code​)​:
1 minute demonstration
When the project is nearing completion, bring up some code
for the project and ask coders to explain to a neighbor how
the code is going to work. Review how we can use comments
in our program to add in explanations for code, so others can
understand how our programs work.

Quickly review how to add in comments.

Commenting time
Ask coders to add in comments explaining the code
throughout their project. Encourage coders to write clear and
concise comments, and ask for clarification or elaboration
when needed.

Standards reinforced:
● 1B-AP-17​ Describe choices made during program

development using code comments, presentations,
and demonstrations

Practices reinforced:
● Communicating about computing

Concepts reinforced:
● Algorithms

Video:​ ​How to add in comments​ (1:34)
Quick reference guide: ​Click here

Facilitation suggestion: ​One way to check for clarity of
comments is to have a coder read out loud their comment and
ask another coder to recreate their comment using code
blocks. This may be a fun challenge for those who type fast
while others are completing their comments.

https://drive.google.com/open?id=0B342uiaCLSS3NGRIdVVvTW95a3c
https://drive.google.com/open?id=0B342uiaCLSS3VEZ0TEFMLU01MU0
https://scratch.mit.edu/projects/90216792/#editor
https://scratch.mit.edu/projects/90216792/#editor
https://scratch.mit.edu/projects/179589133/
https://scratch.mit.edu/studios/1797031/
https://youtu.be/iBv9ZsbqeiU
https://docs.google.com/presentation/d/1dvfo4ChhUWws6GklP8AkoWOwhsMpPqupRFf94XiS0h4/edit?usp=sharing

Assessment

Standards reinforced:
● 1B-AP-17​ Describe choices made during program development using code comments, presentations, and

demonstrations
Practices reinforced:

● Communicating about computing

Although opportunities for assessment in three different forms are embedded throughout each lesson, ​this page​ provides
resources for assessing both processes and products. If you would like some example questions for assessing this project, see
below:

Summative
Assessment ​of ​Learning

Formative
Assessment ​for ​Learning

Ipsative
Assessment ​as ​Learning

The debugging exercises, commenting
on code, and projects themselves can all
be forms of summative assessment if a
criteria is developed for each project or
there are “correct” ways of solving,
describing, or creating.

For example, ask the following after a
project:

● Can coders debug the
debugging exercises​?

● Did coders create a project
similar to the project preview?

○ Note: ​The project
preview and sample
projects are not
representative of what
all grade levels should
seek to emulate. They
are meant to generate
ideas, but expectations
should be scaled to
match the experience
levels of the coders you
are working with.

● Did coders use a variety of block
types in their algorithms and
can they explain how they work
together for specific purposes?

● Did coders include descriptive
comments for each event in all
of their sprites?

● Can coders explain how else
they might use an ​“if”
conditional block​?

● Can coders explain the different
affordances and constraints of
the various ways for creating
user controls?

The 1-on-1 facilitating during each
project is a form of formative
assessment because the primary role of
the facilitator is to ask questions to
guide understanding; storyboarding can
be another form of formative
assessment.

For example, ask the following while
coders are working on a project:

● What are three different ways
you could change that sprite’s
algorithm?

● What happens if we change the
order of these blocks?

● What could you add or change
to this code and what do you
think would happen?

● How might you use code like
this in everyday life?

● See the suggested questions
throughout the lesson and the
assessment examples ​for more
questions.

The reflection and sharing section at the
end of each lesson can be a form of
ipsative assessment when coders are
encouraged to reflect on both current
and prior understandings of concepts
and practices.

For example, ask the following after a
project:

● How is this project similar or
different from previous
projects?

● What new code or tools were
you able to add to this project
that you haven’t used before?

● How can you use what you
learned today in future
projects?

● What questions do you have
about coding that you could
explore next time?

● See the ​reflection questions​ at
the end for more suggestions.

https://drive.google.com/open?id=1C5X0AETVTCmx4YTaHHrVGYB2hNCDUmJEBJokTiiudEk
https://drive.google.com/open?id=0B342uiaCLSS3NGRIdVVvTW95a3c
https://drive.google.com/open?id=0B342uiaCLSS3NGRIdVVvTW95a3c
https://drive.google.com/open?id=1C5X0AETVTCmx4YTaHHrVGYB2hNCDUmJEBJokTiiudEk#heading=h.h5oq13i5ouia

● Did coders create a maze game
with at at least ## different
levels and player controls for
the character?

○ Choose a number
appropriate for the
coders you work with
and the amount of time
available.

Extended Learning

Project Extensions

Suggested extensions Resources, suggestions, and connections

Roguelike challenge (2+ minutes)
1 minute demonstration
Roguelike games are a difficult genre of games
with permanent repercussions for mistakes. For
example, if your character dies in a roguelike, you
might have to start the entire game over.
Demonstrate how we can turn our maze into a
roguelike by adding in one block of code when the
sprite touches a wall.

1+ minutes to code their player controls and
1-on-1 facilitating
Leave your code on the screen and give coders
time to add the ​switch backdrop to block​ in their
code (if they want to). Encourage peer-to-peer
assistance and facilitate 1-on-1 as needed.

Standards reinforced:
● 1B-AP-10​ Create programs that include sequences, events, loops,

and conditionals
Practices reinforced:

● Testing and refining computational artifacts
● Creating computational artifacts

Concepts reinforced:
● Algorithms
● Control

Video:​ ​Roguelike challenge​ (1:32)
Quick reference guide: ​Click here

Adding variables (advanced) (15+ minutes)
5 minute demonstration
Demonstrate how to create a variable for keeping
track of the number of restarts and a variable that
displays how to show the level. Point out that we
need to hold shift and click on the display to show
a large display of the variable.

10+ minutes to code their variables and 1-on-1
facilitating
Leave your code on the screen and give coders
time to create new variables and add the various
data blocks​ to their project (if they want to).
Encourage peer-to-peer assistance and facilitate
1-on-1 as needed.

Standards reinforced:
● 1B-AP-09 ​Create programs that use variables to store and modify

data
● 1B-AP-10​ Create programs that include sequences, events, loops,

and conditionals
Practices reinforced:

● Testing and refining computational artifacts
● Creating computational artifacts

Concepts reinforced:
● Algorithms
● Control
● Variables

Video:​ ​Adding variables​ (2:54)
Quick reference guide: ​Click here

Suggested questions:

● What other variables could we use in a maze game?
● How could we keep track of how long it takes someone to get

through a maze?

https://drive.google.com/open?id=0B342uiaCLSS3Y3lsTkRsR3Y0ajQ
https://youtu.be/pDP333CqYBg
https://docs.google.com/presentation/d/180WTC5zwJhA_lS_8a3om-KezXoIeEe7jsirsCfOwz2I/edit?usp=sharing
https://drive.google.com/open?id=0B342uiaCLSS3VzVIcWN2bnBFXzg
https://youtu.be/4DHoB0u0Oq4
https://docs.google.com/presentation/d/1g30gfCjACq7Z3pBaAwKaNFyYGHDAy5WLdcILAz09V8M/edit?usp=sharing

● Could you figure out how to create a low or high score?
● Could you make it so it displays how long it takes to clear a level?
● What other variables could we keep track of?

Cleaning up with functions (10+ minutes)
5 minute demonstration
Pull up your code with the forever loop and ask
the class to figure out what the three sections of
the forever loop are (movement, checking if
touching a wall, and checking if touching the
goal). Tell the class we can make this much easier
to read by putting each of these sections into
their own functions (​message blocks​) with a
descriptive name.

Demonstrate how to do this with each of the
three sections and make note we need to use
broadcast message and wait blocks​ in order to
make sure it doesn’t move on to the next
algorithm until the previous algorithm is
completed.

5+ minutes to clean up their code and 1-on-1
facilitating
Leave your code on the screen and give coders
time to clean up their code. Encourage
peer-to-peer assistance and facilitate 1-on-1 as
needed.

Standards reinforced:
● 1B-AP-10​ Create programs that include sequences, events, loops,

and conditionals
Practices reinforced:

● Testing and refining computational artifacts
● Creating computational artifacts

Concepts reinforced:
● Algorithms
● Control
● Modularity

Video:​ ​Cleaning up with functions​ (3:12)
Quick reference guide: ​Click here

Suggested questions:

● How do functions and comments help you understand the parts of
a project?

○ What’s the difference between the two?
● What other projects could you make easier to read by creating

functions for each part of the code?
● When shouldn’t you use functions and just keep a longer

algorithm?

Adding even more (30+ minutes, or at least one
class)​:
If time permits and coders are interested in this
project, encourage coders to explore what else
they can create in Scratch by trying out new
blocks and reviewing previous projects to get
ideas for this project. When changes are made,
encourage them to alter their comments to
reflect the changes (either in the moment or at
the end of class).

While facilitating this process, monitor to make
sure coders don’t stick with one feature for too
long. In particular, coders like to edit their
sprites/backgrounds by painting on them or
taking photos, or listen to the built-in sounds in
Scratch. It may help to set a timer for creation
processes outside of using blocks so coders focus
their efforts on coding.

Standards reinforced:
● 1B-AP-10​ Create programs that include sequences, events, loops,

and conditionals
Practices reinforced:

● Testing and refining computational artifacts
● Creating computational artifacts

Concepts reinforced:
● Algorithms
● Control

Facilitation Suggestion: ​Some coders may not thrive in inquiry based
approaches to learning, so we can encourage them to use the ​Tips Section
and ​Block Help​ to get more ideas for their projects; however, we may need
to remind coders the suggestions provided by Scratch are not specific to
our projects, so it may create some unwanted results unless the code is
modified to match our own intentions.

Suggested questions:

● What else can you do with Scratch?
● What do you think the other blocks do?

a. Can you make your project do ____?
● What other sprites can you add to your project?
● What have you learned in other projects that you could use in this

project?
● Can you add more user control than demonstrated?
● How else might you use ​“if” conditional blocks​ in your project?

https://drive.google.com/open?id=0B342uiaCLSS3dDZNeGczOWRtazg
https://drive.google.com/open?id=0B342uiaCLSS3dDZNeGczOWRtazg
https://youtu.be/AKsrqXjpO7s
https://docs.google.com/presentation/d/1SwfGUaRYBMdTECuZ3tesEVHKn0SJReZ47NjhzwQzl5M/edit?usp=sharing
https://drive.google.com/open?id=0B342uiaCLSS3OFJuQnA4SnVjRGM
https://drive.google.com/open?id=0B342uiaCLSS3QnZyLVFXTzNFTzg
https://drive.google.com/open?id=0B342uiaCLSS3NGRIdVVvTW95a3c

● Could you add in other sprites as enemies or power ups?
● Could you make it so you have to collect items to unlock a door

that allows you to escape a maze?
● Could you make your game multiplayer?

Similar projects:
Have coders explore the code of other peers in
their class, or on a project studio dedicated to this
project. Encourage coders to ask questions about
each other’s code. When changes are made,
encourage coders to alter their comments to
reflect the changes (either in the moment or at
the end of class).

Watch ​this video​ (3:20) if you are unsure how to
use a project studio.

Standards reinforced:
● 1B-AP-10​ Create programs that include sequences, events, loops,

and conditionals
● 1B-AP-12​ Modify, remix, or incorporate portions of an existing

program into one's own work, to develop something new or add
more advanced features

Practices reinforced:
● Testing and refining computational artifacts

Concepts reinforced:
● Algorithms

Resource: ​Studio with mazes I created​ (some are very complicated)

Note: ​Coders may need a gentle reminder we are looking at other projects
to get ideas for our own project, ​not to simply play around​. For example,
“look for five minutes,” “look at no more than five other projects,” “find
three projects that each do one thing you would like to add to your
project,” or “find X number of projects that are similar to the project we
are creating.”

Generic questions:

● What are some ways you can expand this project beyond what it
can already do?

● How is this project similar (or different) to something you worked
on today?

● What blocks did they use that you didn’t use?
a. What do you think those blocks do?

● What’s something you like about their project that you could add
to your project?

● How might we add player controls to this project?
● How might you use ​“if” conditional blocks​ in this project?
● If the project is not a game, could you turn this project into a

game?
● If the project is a game, could you turn it into a different kind of

game?

Differentiation

Less experienced coders More experienced coders

Demonstrate the example ​remix project​ or your own version,
and walk through how to experiment changing various
parameters or blocks to see what they do. Give some time for
them to change the blocks around. When it appears a coder
might need some guidance or has completed an idea,
encourage them to add more to the project or begin following
the steps for creating the project on their own (or with
BootUp resources). Continue to facilitate one-on-one using
questioning techniques to encourage tinkering and trying new
combinations of code.

Demonstrate the project without showing the code used to
create the project. Challenge coders to figure out how to
recreate a similar project without looking at the code of the
original project. If coders get stuck reverse engineering, use
guiding questions to encourage them to uncover various
pieces of the project. Alternatively, if you are unable to work
with someone one-on-one at a time of need, they can access
the quick reference guides and video walkthroughs above to
learn how each part of this project works.

https://youtu.be/hudasCRlwLI
https://scratch.mit.edu/studios/1797031/
https://drive.google.com/open?id=0B342uiaCLSS3NGRIdVVvTW95a3c
https://scratch.mit.edu/projects/179589133/

If you are working with other coders and want to get less
experienced coders started with remixing, have those who are
interested in remixing a project ​watch this video​ (1:57) to
learn how to remix a project.

If you are working with other coders and want to get more
experienced coders started with reverse engineering, have
those who are interested ​watch this video​ (2:16) to learn how
to reverse engineer a project.

Debugging Exercises (1-5+ minutes each)

Debugging exercises Resources and suggestions

Why don't we switch to the next level when we
touch the goal (the green rectangle)?

● The “touching color” block needs to be
green, not teal

Why does Scratch Cat move to the right instead of
the left when we press the left arrow?

● We need to change x by -5, not +5

Why do we stay on level 1 even when we reach
the goal?

● We need to switch to the next backdrop,
not the backdrop labeled “Level 1”

Even more debugging exercises

Standards reinforced:
● 1B-AP-15​ Test and debug (identify and fix errors) a program or

algorithm to ensure it runs as intended
Practices reinforced:

● Testing and refining computational artifacts
Concepts reinforced:

● Algorithms
● Control

Suggested guiding questions:

● What should have happened but didn’t?
● Which sprite(s) do you think the problem is located in?
● What code is working and what code has the bug?
● Can you walk me through the algorithm (steps) and point out

where it’s not working?
● Are there any blocks missing or out of place?
● How would you code this if you were coding this algorithm from

Scratch?
● Another approach would be to read the question out loud and

give hints as to what types of blocks (e.g., ​motion​, ​looks​, ​event​,
etc.) might be missing.

Reflective questions when solved:

● What was wrong with this code and how did you fix it?
● Is there another way to fix this bug using different code or tools?
● If this is not the first time they’ve coded: ​How was this exercise

similar or different from other times you’ve debugged code in
your own projects or in other exercises?

Unplugged Lessons and Resources

Although each project lesson includes suggestions for the amount of class time to spend on a project, BootUp encourages
coding facilitators to supplement our project lessons with resources created by others. In particular, reinforcing a variety of
standards, practices, and concepts through the use of unplugged lessons. Unplugged lessons are coding lessons that teach
core computational concepts without computers or tablets. You could start a lesson with a short, unplugged lesson relevant to
a project, or use unplugged lessons when coders appear to be struggling with a concept or practice.

Master list of 100+ unplugged lessons and resources

Incorporating unplugged lessons in the middle of a multi-day project situates understandings within an actual project;
however, unplugged lessons can occur before or after projects with the same concepts. ​An example for incorporating
unplugged lessons:

Lesson 1. Getting started sequence and beginning project work

https://youtu.be/MhXYcjKiyss
https://youtu.be/tKNiaRuZ24U
https://scratch.mit.edu/projects/179631691/#player
https://scratch.mit.edu/projects/179631691/#player
https://drive.google.com/open?id=0B342uiaCLSS3dzBTY1FYT09HOTQ
https://drive.google.com/open?id=0B342uiaCLSS3dzBTY1FYT09HOTQ
https://scratch.mit.edu/projects/179631704/#player
https://scratch.mit.edu/projects/179631704/#player
https://drive.google.com/open?id=0B342uiaCLSS3dUlGcVY3ZzE0bE0
https://scratch.mit.edu/projects/179631710/#player
https://scratch.mit.edu/projects/179631710/#player
https://drive.google.com/open?id=0B342uiaCLSS3TDU2SjFjb2Q1WmM
https://drive.google.com/open?id=0B342uiaCLSS3TDU2SjFjb2Q1WmM
https://scratch.mit.edu/studios/4149066/
https://drive.google.com/open?id=0B342uiaCLSS3bW0xOWVMU0FMems
https://drive.google.com/open?id=0B342uiaCLSS3Y3lsTkRsR3Y0ajQ
https://drive.google.com/open?id=0B342uiaCLSS3dDZNeGczOWRtazg
https://docs.google.com/spreadsheets/d/1IRAs7iRxQnUmpH9aJ2q4INx8f3JOWwSzJl8sRnI7lVA/edit?usp=sharing

Lesson 2. Continuing project work
Lesson 3. Debugging exercises and unplugged lesson that reinforces concepts from a project
Lesson 4. Project extensions and sharing

 Reflection and Sharing

Reflection suggestions Sharing suggestions

Coders can either discuss some of the following prompts with
a neighbor, in a small group, as a class, or respond in a
physical or digital journal​. ​If reflecting in smaller groups or
individually, walk around and ask questions to encourage
deeper responses and assess for understanding. ​Here is a
sample of a digital journal ​designed for Scratch (​source​) and
here is an example of a printable journal​ useful for younger
coders.

Sample reflection questions or journal prompts:

● What’s something we learned while working on this
project today?

○ What are you proud of in your project?
○ How did you work through a bug or difficult

challenge today?
● What other projects could we do using the same

concepts/blocks we used today?
● What’s something you had to debug today, and what

strategy did you use to debug the error?
● What mistakes did you make and how did you learn

from those mistakes?
● How did you help other coders with their projects?

○ What did you learn from other coders today?
● What questions do you have about coding?

○ What was challenging today?
● Why are comments helpful in our projects?
● H​o​w​ ​i​s​ ​t​h​i​s​ ​p​r​o​j​e​c​t​ ​s​i​m​i​l​a​r​ ​t​o​ ​other projects you’ve

worked on?
○ H​o​w​ ​i​s​ ​i​t​ ​d​i​f​f​e​r​e​n​t​?

● Why are keyboard keys easier to use for player
controls than buttons?

● What’s the difference between user controls and
player controls?

● What other projects could you turn into a game?
● How else might you use an ​“if” conditional block​?
● More sample prompts

Standards reinforced:
● 1B-AP-17​ Describe choices made during program

development using code comments, presentations,
and demonstrations

Practices reinforced:
● Communicating about computing
● Fostering an inclusive culture

Concepts reinforced:
● Algorithms
● Control
● Modularity
● Program development

Peer sharing and learning video: ​Click here​ (1:33)
At the end of class, coders can share with each other
something they learned today. Encourage coders to ask
questions about each other’s code or share their journals with
each other. When sharing code, encourage coders to discuss
something they like about their code as well as a suggestion
for something else they might add.

Publicly sharing Scratch projects​: If coders would like to
publicly share their Scratch projects, they can follow these
steps:

1. Sharing Your Project​ (2:35)
a. Quick reference guide

2. (Advanced) ​Creating a thumbnail​ (3:26)
a. Quick reference guide

https://docs.google.com/presentation/d/1ZqFg_GjL9sIpK2NpDyFzuAX0dB6iAM3J4iOgV3guym4/edit?usp=sharing
https://docs.google.com/presentation/d/1ZqFg_GjL9sIpK2NpDyFzuAX0dB6iAM3J4iOgV3guym4/edit?usp=sharing
http://scratched.gse.harvard.edu/ct/assessing.html
https://drive.google.com/file/d/0B4AcYgnkzzHOd0ExdWJUYWZIbm8/view
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
https://drive.google.com/open?id=0B342uiaCLSS3NGRIdVVvTW95a3c
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
https://youtu.be/WC4qykY3OPI
https://youtu.be/WXH9T1WZ_us
https://docs.google.com/presentation/d/1nmV0T4i6DwsW3QWYSxOzhOTkskPVHW1Kb-RuTqMJoPg/edit?usp=sharing
https://youtu.be/q11K4SZ50gs
https://docs.google.com/presentation/d/1Kl3a_Y_ahtOVNn-Wm4CgGC2L3ep6cdaM49KzC262tag/edit?usp=sharing

An Amazing Maze Game
Coder Resources

Project Sequence
(complete each step before moving to the next)

1. Sign in and create a new project
2. Create levels

a. Additional resources:
i. Video:​ ​Image editor: Bitmap mode​ (3:38)

ii. Video:​ ​Image editor: Vector mode​ (4:31)
iii. Video:​ ​Image editor: Extra tools​ (4:12)

3. Create player controls
4. Create a restart function
5. Detect the walls
6. Create a goooooaaaaalllllllll
7. Add in comments

Project Extensions
(pick and choose extensions that sound interesting)

1. Create a roguelike challenge
2. Add variables (Advanced)
3. Clean up your code with functions
4. Share your project
5. Create a thumbnail
6. Learn even more Scratch tips

Debugging Exercises
(practice your debugging skills by solving these bugs)

1. Why don't we switch to the next level when we touch the goal (the green rectangle)?
2. Why does Scratch Cat move to the right instead of the left when we press the left arrow?
3. Why do we stay on level 1 even when we reach the goal?
4. Even more debugging exercises

Example Project and Files
(use these resources to see the original project, learn how to remix the project, or to challenge yourself)

1. Project​: ​Example project
2. Video: ​Project Preview​ (1:11)
3. Video​: ​Remixing a project​ (1:57)
4. Video​: ​How to reverse engineer a project​ (2:16)

https://bootuppd.org/
https://scratch.mit.edu/projects/editor/
https://docs.google.com/presentation/d/1iywBxBEGL_giw1ErN0t_MyrNccIJnDzshXtsfVwBqO0/edit?usp=sharing
https://drive.google.com/open?id=0B342uiaCLSS3MkdjTENjVG12N1U
https://drive.google.com/open?id=0B342uiaCLSS3cFpKMFlHbHNDbm8
https://drive.google.com/open?id=0B342uiaCLSS3Q3VMcWtyOGpacWc
https://docs.google.com/presentation/d/1v1JMAN3GaBUWr2sFZ7-L_sWk4uPbuWyWFcY2tlGY-GQ/edit?usp=sharing
https://docs.google.com/presentation/d/1OA6p345z3ztiosI1Lnju7JAVdloX9DXhnd5_hM0u8ko/edit?usp=sharing
https://docs.google.com/presentation/d/17sai4USNf_aOu7TRS4J5IJmMhCxa3zu4CpimSJMT9yw/edit?usp=sharing
https://docs.google.com/presentation/d/1LexHI37JiPo4R981AQsWGzB1P1ZRhZ6dSmIPQWWXFLg/edit?usp=sharing
https://docs.google.com/presentation/d/1dvfo4ChhUWws6GklP8AkoWOwhsMpPqupRFf94XiS0h4/edit?usp=sharing
https://docs.google.com/presentation/d/180WTC5zwJhA_lS_8a3om-KezXoIeEe7jsirsCfOwz2I/edit?usp=sharing
https://docs.google.com/presentation/d/1g30gfCjACq7Z3pBaAwKaNFyYGHDAy5WLdcILAz09V8M/edit?usp=sharing
https://docs.google.com/presentation/d/1SwfGUaRYBMdTECuZ3tesEVHKn0SJReZ47NjhzwQzl5M/edit?usp=sharing
https://docs.google.com/presentation/d/1nmV0T4i6DwsW3QWYSxOzhOTkskPVHW1Kb-RuTqMJoPg/edit?usp=sharing
https://docs.google.com/presentation/d/1Kl3a_Y_ahtOVNn-Wm4CgGC2L3ep6cdaM49KzC262tag/edit?usp=sharing
https://drive.google.com/open?id=0B342uiaCLSS3X0JZNHVSOEJVR1E
https://scratch.mit.edu/projects/179631691/#player
https://scratch.mit.edu/projects/179631704/#player
https://scratch.mit.edu/projects/179631710/#player
https://scratch.mit.edu/studios/4149066/
https://scratch.mit.edu/projects/179589133/
https://drive.google.com/open?id=0B342uiaCLSS3MlNIcjgxWFpscVk
https://drive.google.com/open?id=0B342uiaCLSS3SGp4aWhabmZBbTQ
https://drive.google.com/open?id=0B342uiaCLSS3NElqMW8xc2dWVm8

	17 - An Amazing Maze Game
	17 - An Amazing Maze Game (coder resources)

